The Issues

>How are word-internal morphemes ordered?

> How does the grammar **distinguish** between **prefixes** and **suffixes**?

The Aim

To present a theory

> in which **Direction of Attachment** is a **Property of Affixes**,

> ... Not of Constraints (*cf McCarthy & Prince 1993*)

but still set within Optimality Theory

The Theory

► <u>Background:</u>

A string is a set of positions that map onto features:

Features: k æ t /k æ t/ 'cat' = $\begin{vmatrix} Features: k æ t \\ | & | \\ Positions: 1 2 3 \end{vmatrix}$

(II) <u>Proposal</u>:

> Not all input positions have to map onto features:

Features: Λ n / Λ n \Box / 'un -' = | | Positions: 1 2 3

> But all output positions must map onto something.

> Correspondence Constraints determine how the output mapping takes place.

Implementation

> This is the *most harmonic* output:

□All input positions have output correspondents

□No featural material is lost

Failed Candidates:

Consequences

(I) The Prefix-Suffix Asymmetry

If a language has prefixes it also has suffixes, but not vice-versa.

(Greenberg 1957, 1966; Hawkins & Gilligan 1988; Bybee, Pagliuca, and Perkins 1990; Hall 1992)

Positional Faithfulness: Correspondence Constraints can refer to Root-Initial position, but not Root-final position (Beckman 1998, and others).
Prediction: UNIFORMITY-1: "A root-initial segment cannot have more than one input correspondent."

The ranking ||UNIFORMITY-1 » LINEARITY|| means that underlying **prefixes** will surface as **suffixes**:

Soot: /piki/, Affix: /ta□/ (only relevant correspondence relations are shown)

/t a □₁ /, /p₂ i k i₃/	UNIFORMITY-1	LINEARITY
[™] tap _{1,2} iki	x!	
piki _{3,1} ta		X

... but **underlying suffixes** will surface as **suffixes**:

s<u>•Root</u>: /piki/, <u>Affix</u>: /□ta/

/□₁ t a /, /p₂ i k i₃/	UNIFORMITY-1	LINEARITY
tap _{1,2} iki	x!	x!
r≊ piki _{3,1} ta		

IS There is no ranking that bans suffixes and allows prefixes.

(II) The Affix Ordering Generalisation

Class II Affixes cannot appear closer to the Root than Class I affixes

*Af_I+Af_{II}+Root (no direction implied) (Siegel 1974)

e.g. *in_l-non_{ll}-legible, *tender-ness_{ll}-ous_l

Constraints on class II affixes outrank constraints on class I affixes (Benua 1997).

Therefore, || UNIFORMITY-CLASS II >> UNIFORMITY-CLASS I ||

UNIFORMITY-I(I): "If x is an output position and x belongs to a class I(I) affix, x must not correspond to more than one input element."

* ness (II) + ous (I)

$/\Box_1$ n ə s ₂ /, $/\Box_3$ ə s ₄ /, Root	UNIFORMITY -II	UNIFORMITY-I
(a) Roo <u>t</u> ₁ n ə <u>s</u> _{2,3} ə s ₄	x x!	X
Image: (b) Root ₃ a s _{4,1} n a s ₂	X	ХХ

- This shows that the order [Root+class I + class II] harmonically bounds the order [Root+class II+class I].
- Therefore, class II affixes will never appear between class II affixes and the root.

_____ The End _____