Markedness in Prominent Positions

Paul de Lacy University of Massachusetts, Amherst <delacy@linguist.umass.edu>

HUMIT

August 31, 2000

1 Empirical Issues

(1) Prominent Positions (Π):

(i) onsets
(ii) stressed syllables (σ)
(iii) root-initial syllables (σ₁)

 (2) The Subset Principle in Prominent Positions: Contrasts in non-Π ⊆ Contrasts in Π (i.e. neutralization in non-prominent positions)

(3) Empirical Issue: Do other logical possibilities exist?
 (i) Contrasts in non-Π ⊂ Contrasts in Π
 (i.e. neutralization in prominent positions)

(ii) Contrasts in Π and those in ~Π are disjoint(i.e. allophony conditioned by prominent positions)

- (4) Answer: Yes, all three possibilities do exist. (Trubetzkoy 1939)
 - *However*, the types in (3) are more restricted than the one in (2).
 - The types in (3) only apply to classes defined by *sonority*, not by individual features such as Place, [back], etc.

2 Theoretical Proposals

- (5) To account for the patterns in (3), I argue that:
 - **□** Markedness constraints motivate Π-neutralization (3i) and Π-allophony (3ii).
 - □ These markedness constraints are formed by the combination of the sonority scale with prominent positions.
 - □ More generally, the creation of markedness constraints is fairly free.
 - □ However, a general principle restricts the form of markedness constraints:
- (6) *The Planar Accessibility Principle*:
 - (i) Elements that appear on the prosodic plane: Root, μ , σ , Ft, ...
 - (ii) Elements that appear on the featural plane: Root, [labial], [coronal],...

For any markedness constraint C^M , and for every pair of elements e_1 , e_2 in C^M , e_1 and e_2 are on the same plane.

e.g. σ/CODA is fine since both σ and CODA are on the prosodic plane. $\sigma/\text{[labial]}$ is ill-formed since σ is on the prosodic plane and [labial] is on the featural plane.

3 **Π-Allophony in Niuafo'ou**

- Niuafo'ou [niuafo?óu] is a Polynesian language, described by Tsukamoto (1988).
 The data and generalizations presented here are primarily from Tsukamoto's dissertation; I recently confirmed them with a native speaker.
- (8) Syllables are $(C)V_i(V_{i/k})$
 - Stress falls on the penultimate *vowel* (like the closely related Tongan).
 - Vowels = /i e a o u/

(9) *Vowel Devoicing*

High vowels devoice:

(1) between voiceless stops [p t k (??)] $(C_{stop}^{stop}, C_{stop}^{stop})$

(2) between a voiceless stop and a word boundary (C^{stop}_{-} #)

[kàpikápi]	wedge	<i>cf</i> [mokimoki]	shatter
[tápi]	wipe	cf [táŋi]	weep
[hàu.?a.lì.ki̯.sí.a]	attended by chiefs		

(3) after voiceless continuants [f s h] and before another consonant $(C_{\circ}^{+cont}C)$

[mòfimófi]	slight fever	<i>cf</i> mokimoki
[pàsikála]	bicycle	
[lahilahi]	somewhat many	<i>cf</i> [mòfuíke], *[mòfuíke]

(10) Analysis:

- The exact analysis of devoicing does not affect the argument.
- It is provided in Appendix 1 for the sake of completeness.

• For the rest of this talk, I will call the set of constraints that trigger devoicing "DEVOICE".

(i) $\parallel \text{Devoice} \ \text{``Identify}$

3.1 Exceptions

(11) Vowels do not devoice in certain positions:

(i) Prosodic V	Word-initial syllables:
----------------	-------------------------

[kití:]	game	*[kití:]
[tutúku]	stop	*[tụtúkụ]

(ii) Stressed syllables:

[lahíni]	large+deictic	cf [láhi] large
[hífo]	descend	*[hífo]
[tùkụtúkụ]	put down for a while	*[tùkutúku]

(12) This is a case with *disjoint sets*:

In the devoicing environment, prominent positions (σ , σ ₁) contain voiced vowels while non-prominent positions contain devoiced vowels.

3.2 Analysis

- (13) <u>The Challenge</u>: How can we block the effects of DEVOICE in stressed syllables and initial syllables?
- (14) <u>Faithfulness constraints aren't any use</u>: By Richness of the Base, we have to consider an input like /kiti:/, with the initial vowel already devoiced. With a faithfulness constraint on initial syllables, the vowel will incorrectly remain devoiced:

/kiti:/	IDENT _{$\sigma1$} [VD]	DEVOICE
● [*] kiti:		
kiti:	x!	Х

/kiti:/	$* \sigma_1/v$	DEVOICE
kití:	x!	
🖙 kití:		Х

(15) So, we need to use a **markedness constraint**: $* \sigma_1/V_2$

(16) Ditto for stressed syllables: $* \dot{\sigma} / V$

/tuku/	* ớ/V	DEVOICE
týkų	x!	
🖙 túkụ		Х

3.3 **Π-Neutralization**

- (17) An example of neutralization in prominent positions is found in Campidanian Sardinian.
- (18) Campidanian Sardinian (Bolognesi 1998)
 - Does not allow rhotics or glides (prosodic) word-initially, but they can appear elsewhere.
 - A metathesis process repairs PrWd-initial glides and rhotics

(19) Positional faithfulness is of no use here.

• There is no ranking of IDENT- σ_1 -[r], *r, and IDENT-[r] that could possibly result in [r] being banned from initial position.

• Positional faithfulness constraints promote retention of contrast. Neutralization of contrast can only be effected by markedness constraints.

4 The Π-Markedness Constraints

- (20) <u>Question</u>: Where do the $*\sigma_1/V$ and $*\sigma/V$ constraints fit in?
- (21) <u>Proposal</u>:

They are formed by free combination with the sonority constraints of Prince & Smolensky (1993):

- NUC = syllable nucleus
 ONS = syllable onset
 Sonority scale: | vowels > glides > liquids > nasals > fricatives > stops |
- (ii) □ || *ONS/vowel » *ONS/glide » ... » *ONS/stop ||
 □ || *NUC/stop » *NUC/fricative » ... » *NUC/vowel ||
 - (i) We can articulate the 'vowel' part of the sonority scale more fully, based on work on sonority-driven stress (see esp. Kenstowicz 1994) and the Niuafo'ou case:

 $|a > e, o > i, u > \mathfrak{d} > i > \bigvee |$

- (22) Now combine the sonority constraints with prominent positions:

 - $\label{eq:stop} \square ~ \| \ast \sigma_l / \texttt{NUC/stop} \gg \ast \sigma_l / \texttt{NUC/fricative} \gg \dots \gg \ast \sigma_l / \texttt{NUC/vowel} \, \|$
 - □ || * σ́/ONS/vowel » * σ́/ONS/glide » ... » * σ́/ONS/stop ||
 - □ || *ơ/NUC/stop » *ơ/NUC/fricative » ... » *ơ/NUC/vowel || ...etc...
 - 🖙 Also see Kenstowicz (1996)

5 Predictions

5.1 Onsets

(23) The sonority hierarchy also applies to *onsets*:
 e.g. *ó/ONS/glide bans glides in stressed syllable onsets.

(24) Prediction borne out in Niuafo'ou:

(i) $V^{+high} \rightarrow glides / V$		
[juníti]	unit	*[iuníti]
[waéa]	wire	*[uaéa]
[welìŋatóni]	Wellington	*[ueliŋatoni]

	/iuniti/	ONSET	ident-µ
쎹	i.u.ní.ti	ХХ	
	ju.ní.ti		X

(25) *except* when the glide will end up in a stressed syllable:

1	0	1 2	
[iáte]]	yard	*[játe]
[uáft	1]	wharf	*[wáfu]
[uípi]	whip	*[wípi]

	/iate/	*ớ/ONS/glide	ONSET	ident-µ
rg	i.á.te		ХХ	
	já.te	x!		Х

(26) Note that we cannot use positional faithfulness here either: by Richness of the Base we need to explain why input /jate/ ends up as [iate]. Positional faithfulness won't achieve this.

5.2 **Π–Neutralization**

(27) The Π /sonority constraints are predicted to effect neutralization, not just allophony:

/wija/	*ớ/ONS/glide	IDENT-glide
wíja	x!	
🖙 vija		Х

- (28) Gujarati (Cardona 1965:28) Glides are neutralized word-initially: $/w/ \rightarrow [v]$, as in the tableau above.
- (29) <u>Other languages</u>: Afrikaans
 Golin (Bunn & Bunn 1970:4)
 Chamicuro (Parker 2000)
 Huariapano (Parker 1999)

no word-initial glides no word-initial liquids no [h] or [?] in onsets no [h] in initial main-stressed σ

5.3 Symmetry of Repair

(30) For any markedness constraint α/β , either α or β can be affected depending on the ranking of constraints that *locate* (e.g. ALIGN) or *preserve* (i.e. FAITH) α/β :

(i) α is affected:	$\ \text{LOCATE/FAITH-}\beta, *\alpha/\beta \gg \text{LOCATE/FAITH-}\alpha \ $
(ii) β is affected:	$\ \text{LOCATE/FAITH-}\alpha, *\alpha/\beta \gg \text{LOCATE/FAITH-}\beta \ $

(31) Example of present interest: The allophony case.

* σ /NUC/V, where ' α '= σ and ' β '=NUC/V

This constraint can be satisfied by either eliminating the \bigvee or by *moving the stress*.

(32)	Eliminate	V:	
· · ·			

/tika/	STRESS=PENULT	*σ́/NUC/Ϋ́	DEVOICE
🖙 (a) tíka			Х
(b) ţíka		x!	
(c) ţiká	x!		

(33) Move Stress:

/tika/	DEVOICE	*σ́/NUC/Ϋ́	STRESS=PENULT
(a) tíka	x!		
(b) ţíka		x!	
🕫 (c) ţiká		 	Х

(34) Sonority-Driven Stress
Such cases do exist (Kenstowicz 1996, de Lacy 1997, in prep.)
e.g. Jaz'va Komi (Itkonen 1955, Lytkin 1961)

Main stress falls on the leftmost syllable with a non-high vowel.

/mijanlan ^j /	IDENT-i/u	*ớ/NUC/i,u	align-σ́-L
mijánlan ^j		1 1 1	Х
🖙 míjanlan ^j		x!	
méjanlan ^j	x!		

6 Impossible Π-Neutralizations and Allophonies

(35) <u>Summary so far</u>:

 Π -neutralization and allophony is a response to constraints that refer to Π and classes defined by sonority.

(36) <u>Empirical Issue</u>: Q: Do П-neutralizations and allophonies ever refer to classes defined by feature classes like [labial], [back], etc.? A: No.

(37) Further evidence for this comes from prominence-driven stress: As shown above, the constraints *ố/SONORITY can drive sonority-sensitive stress. However, there are no prominence-driven stress systems in which stress is attracted to a particular syllable based on a single feature. (e.g. there is no stress system in which stress falls on the leftmost front vowel, ignoring back vowels). See de Lacy (1997:esp. §1.1.3) for some discussion.

- (38) <u>Theoretical Issue</u>:
 - Q: Why not? Or in present terms:
 - Why are there no constraints of the form Π/F ?
- (39) <u>My Answer</u>(i) Sonority is a property of root nodes.
 - (ii) *Prosodic Plane* vs *Featural Plane*
 - with root nodes at the axis.
 - (iii) Planar Accessibility Hypothesis:
 Every element in M (M is a markedness constraint) is on the same plane as every other element in M.
 - (iv) For precursors to this hypothesis, see Ito & Mester (1992) (also see Lacy (1997) for further references).
- (40) <u>Example 1</u>: * $\acute{\sigma}$ /ONS/glide (where 'glide' is a sonority level).
 - More explicitly: *{A(σ, ONSET_i) & A(ONSET_i, Root_k) & S(Root_k, glide)}
 (i) A(α,β) is the association relation
 (ii) S(α,β) is the 'sonority' function.
 - $\dot{\sigma}$, onset, Root are all on the prosodic plane.
- (41) Example 2: *+SON/-VOICE "no voiceless sonorants"
 - More explicitly: *{A(Root_i, [+son]) & A(Root_i, [-voice])}
 - Root, [+son], [-voice] are all on the featural plane.
- (42) Example 3: $* \acute{\sigma}$ /NUC/[-back]
 - More explicitly: $\{A(\sigma, nuc_i) \& A(nuc_i, Root_k) \& A(Root_k, [-back])\}$
 - σ and *nuc* are on the prosodic plane, but [-back] is on the featural plane.

6.1 Implications

6.1.1 Positional Markedness

```
(43) Non-Π (traditional) Neutralization:
• Must be effected by FAITHFULNESS constraints, Beckman (1998)-style:
|| FAITH-Π-F » *F » FAITH-F ||
e.g. || IDENT-σ-[labial] » *[labial] » IDENT-[labial] ||
```

(44) cf Positional Markedness constraints: $\| \text{*non-}\Pi/F \text{ } \text{ } \text{FAITH-}F \|$ (e.g. Zoll 1998) $\| \text{*}\breve{\sigma}/[\text{labial}] \text{ } \text{ } \text{IDENT-}[\text{labial}] \|$ (45) The issue that positional markedness raises: if $*non-\Pi/F$ constraints are ok, why aren't $*\Pi/F$ constraints allowed?

6.1.2 Featural constraints with Prosodic Domains

- (46) The PAH also means that constraints that refer to featural conditions within prosodic domains cannot exist. A classic case is the OCP, as applied to dissimilation: e.g. $OCP_{\sigma}(labial) \approx *\{ [labial]...[labial] \}_{\sigma}$
- (47) The PAH requires the featural condition to be decoupled from the statement of domain.
 - This is not an unwelcome requirement, since constraints have become more and more context-free, with domain- and environment-restrictions due to the interaction of faithfulness or related constraints.
- (48) *An Advertisement*: For an OCP approach that decouples the condition and the domain, see Struijke & de Lacy (to appear (in October)).

7 Summary

- (49) *Empirical*: Neutralization in prominent positions is attested.
 - Allophony conditioned by prominent positions is attested.

(50) *Theoretical*:

The Π -markedness constraints result from relatively free combination of prominent positions with other constraints.

- Combination is limited by the Planar Accessibility Hypothesis: "You can have elements from different planes in the same markedness constraint."
- (51) *Future Issues*:

• Is the PAH correct? Can we absolutely do without any constraint of the form $\pi/F(\pi \text{ a prosodic element}, F \text{ a feature})$?

Paul de Lacy

Department of Linguistics South College University of Massachusetts Amherst MA 01003 USA <delacy@linguist.umass.edu> or <paul@de.lacy.to> http://www-unix.oit.umass.edu/~delacy Paul de Lacy

10

References

- Alderete, J. (1995). Faithfulness to prosodic heads. <u>The Derivational Residue in</u> <u>Phonology</u>. B. Hermans and M. v. Oostendorp. Amsterdam, John Benjamins.
- Beckman, J. N. (1998). Positional Faithfulness, University of Massachusetts, Amherst.
- Bolognesi, R. (1998). <u>The Phonology of Campidanian Sardinian: A Unitary Account of a</u> <u>Self-Organizing Structure</u> Holland, HIL Disserations.
- Bunn, G. and R. Bunn (1970). Golin Phonology. <u>Pacific Linguistics A23</u>. Canberra, Australian National University: 1-7.
- Cardona, G. (1965). <u>Gujarati Reference Grammar</u>. Philadelphia, University of Philadelphia Press.
- Casali, R. (1997). "Vowel elision in hiatus contexts: Which vowel goes?" Language 73: 493-533.
- Chomsky, N. and M. Halle (1968). <u>The Sound Pattern of English</u>. New York, Harper & Row.
- de Lacy, P. (1997). Prosodic Categorisation. MA Thesis, Auckland, New Zealand: University of Auckland. ROA #133.
- de Lacy, P. (in prep.) [Working Title:] Prominence and the Theory of Grammar. PhD Dissertation, University of Massachusetts.
- Itkonen, E. (1955). "Ueber die Betonungsverhältnisse in den finnish-ugrischen Sprachen." Acta Linguistics Academiae Scientarium Hungaricae 5: 21-23.
- Ito, J. and A. Mester (1992). Weak layering and word binarity, University of California at Santa Cruz.
- Kenstowicz, M. (1996). "Sonority-Driven Stress." Rutgers Optimality Archive #33.
- Lytkin, V. I. (1961). Komi-iaz'vinskii dialekt. Moscow, Izdatel'stvo Akademii Nauk SSR.
- Parker, S. (1998). "Disjoint Metrical Tiers in Huariapano." <u>ms. University of Massachusetts, Amherst.</u>
- Parker, S. (in prep.). "An Onset Filter in Chamicuro." ms.
- Prince, A. and P. Smolensky (1993). Optimality Theory: Constraint interaction in generative grammar. New Brunswick, NJ, Rutgers University.
- Smith, J. (in prep.). TBA. PhD Dissertation, University of Massachusetts, Amherst.
- Struijke, C. & P. de Lacy (2000, to appear) "Overkill in Dissimilation." NELS 31.
- Trubetzkoy, N. S. (1939). <u>Grundzüge der Phonologie</u>. Güttingen, Vandenhoeck and Ruprecht.
- Tsukamoto, A. (1988). <u>A Grammar of Niuafo'ou</u>. PhD Dissertation, Australian National University.
- Yallop, C. (1977). <u>Alyawarra: An Aboriginal Language of Central Australia</u>. Australian Institute of Aboriginal Studies.
- Zoll, C. (1998). "Positional Asymmetries and Licensing." <u>Rutgers Optimality Archive</u> #282.

Markedness in Prominent Positions -- HUMIT

Appendix 1: Devoicing

- Since onset consonants always retain their underlying specification for [voice], IDENT_{ONSET}[VOICE] must be dominant.
- Since vowels adjacent to continuants devoice (e.g. *mofimofi*): AGREE[-voice]^{+cont} "Segments adjacent to continuants must be [-voice] if the continuant is [-voice]" is high-ranked.
- □ The other facts are accounted for by ranking || AGREE[+VOICE] » AGREE[-VOICE] ||

(52)

	/lahilahi/	AGREE[-VOICE] ^{+CONT}	AGREE[+VOICE] ^{+CONT}	IDENT[VOICE]
6	lahilahi		Х	ХХ
	lahilahi	x!		Х
	lahilahi	x x!		

(53)

()			
/tapi/	AGREE[+VOICE]	AGREE[-VOICE]	IDENT[VOICE]
🖙 tapi			Х
tapi		x!	

(54)

	/mokimoki/	AGREE[+VOICE]	AGREE[-VOICE]	IDENT[VOICE]
6	mokimokį		Х	Х
	mokimoki	x!		ХХ

Appendix 2: Onset-Sonority-Driven Stress

- (55) Even onset sonority counts:
 - Alyawarra (Yallop 1977) (an Arandic language)
 - Primary stress falls on either the first or second syllable.
 (i) Analyzed as undominated ALIGN-FT-L with dominated FTFORM=TROCHEE.
 - □ Stress falls on the initial syllable *only if* it has an onset: *rínha* cf *ampá, ilípa*

(56) Analysis (after de Lacy 1997 and others)

1.	/rinha/	Ó/ONSET	FTFORM=TROCHEE
1	rínha		
	rinhá		x!
2.	/ampa/	ό /ONSET	FTFORM=TROCHEE
2. FF	/ampa/ ámpa	σ́/onset x!	FTFORM=TROCHEE

Paul de Lacy

12

- (57) Exception: Stress does not fall on the initial syllable if its onset is a glide:
 e.g. walíjmparra, *wálijmparra jukúntja, *júkuntja

/junkuntja/	*ớ/ONS/glide	FTFORM=TROCHEE
júkuntja	x!	
🖙 jukúntja		Х

(58) A similar (and more interesting situation) exists for Pirahã (see analysis and references in de Lacy 1997).