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ABSTRACT OF THE DISSERTATION

Discovering Underlying Forms: Contrast Pairs and Ranking

By Nazarré Nathaniel Merchant

Dissertation Director:
Bruce Tesar

Phonological learners must acquire a lexicon of underlying forms and a constraint

ranking. These must be acquired simultaneously, as the ranking and the underlying forms

are interdependent. Exhaustive search of all possible lexica is intractable; the space of

lexica is simply too large. Searching the underlying forms for each overt form in isolation

poses other problems. A single overt form is often highly ambiguous among both

underlying forms and rankings. In this dissertation I propose a learning algorithm that

attends to pairs of overt forms that differ in exactly one morpheme. These pairs can

exhibit less ambiguity than the isolated overt forms, while still providing a reduced

search space.

The algorithm first assigns underlying values to occurrences of features whose surface

realization never alternates; the other underlying features are left initially unset (Tesar et

al., 2003).  Pairs of overt forms that differ in one morpheme are then constructed.  The

algorithm then considers the possible values of unset features for each pair, processing

pairs with the fewest unset features first. It uses inconsistency detection (Tesar, 1997) to

test sets of values of unset features for viability. A set of values for the unset features is
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viable if it produces the correct overt forms under some ranking. Those feature values

which are common across all viable solutions are then set.  In the process of testing for

inconsistency for each set of values of unset features a set of winner-loser pairs is

generated.  The learner determines the ranking restrictions jointly entailed by these sets of

winner-loser pairs.  These ranking restrictions are then maintained while processing all

further contrast pairs.  After all pairs have been processed, any still unset feature values

are assigned default values. The general success of the algorithm depends upon these

features being fully predictable in the output.  A ranking is then obtained from this

lexicon using Biased Constraint Demotion (Prince and Tesar, 2004).

Fixing all non-alternating features reduces the effective lexical search space. The

algorithm further reduces the lexical search space by breaking up the search into tractable

local pair searches.  Extracting shared ranking information from winner-loser pairs

generated from inconsistency detection restricts which featural combinations for future

contrast pairs will be viable providing information that is otherwise unavailable to the

learner.
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Chapter 1. Contrast pairs and local lexica

To define a language optimality theoretic grammars require a ranking of the constraints, a

set of underlying forms that the grammar acts upon, and a morphology for combining

underlying forms into inputs.  Presupposing a given morphology, a learner must

determine both what the ranking is and what the underlying forms are to be said to have

learned a language.  These two learning tasks are intertwined: change the ranking and

different underlying forms may be needed to produce the correct outputs; change the

underlying forms and a different ranking may be needed to produce the correct outputs.

These tasks cannot be done in isolation and because they are interdependent, information

about the ranking and lexicon must be determined concomitantly.  This dissertation will

propose and investigate the properties of an algorithm that extracts ranking and lexical

information from the overt forms of the language.

Besides the basic imperative of finding a correct grammar by learning the lexicon and

ranking, any learning algorithm must be concerned with efficiency.  The learner must

successfully search a large space for a correct lexicon and ranking that will produce the

overt forms of the language and do so in a reasonable amount of time.  A naïve approach

to learning is an exhaustive search.  The learner checks each lexicon and ranking pair for

correctness.  Does a given lexicon and ranking produce the correct overt forms?  If not,

consider the next pair.  Under realistic conditions this is hopelessly inefficient.  The

learner must focus its limited computational resources on an algorithm that is guaranteed

to succeed and to do so quickly.  To this end I propose that the learner restricts itself to
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focusing not on all of the forms of the language at once but on contrast pairs (Alderete et

al. 2005, Tesar 2004), pairs of overt forms that differ in one morpheme.  Contrast pairs

will prove to serve two purposes: they will be informative and computationally tractable.

By focusing on contrast pairs the learner will be provided information about both the

lexicon and the ranking and this information will be able to be extracted efficiently.

This dissertation explores and articulates novel ways of learning underlying forms by

focusing on computationally tractable sets of underlying forms, specifically contrast

pairs.  The research presented here demonstrates new ways of learning both the

underlying forms of the language and the ranking that produces the overt forms of the

language the learner is attempting to learn.  This new approach, encompassed by the

algorithm that I propose  called the Contrast Pair and Ranking information algorithm

(CPR), is capable of producing a correct lexicon and ranking in computationally feasible

amounts of time from a learning state that includes no knowledge of the lexicon or the

ranking.

This chapter will discuss the assumptions of the learning algorithm along with contrast

pairs and local lexica.  Chapter 2 will present a learning algorithm that focuses on

extracting lexical information from contrast pairs.  Chapter 3 will show the limitations of

only extracting lexical information from contrast pairs.  Chapter 4 will propose a method

of determining shared ranking information across consistent local lexica.  Chapter 5 will

present a learning algorithm that both extracts lexical information and ranking
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information from contrast pairs.  And finally, Chapter 6 will discuss some implications of

this approach and languages that support it.

Section 1.1. Learning assumptions

Grammatical system assumptions

I assume a range of Optimality Theoretic systems (Prince and Smolensky 1993) with a

limited typology of constraints.  Constraints are assumed to fall into one of two classes,

markedness constraints which only reference the output form of the candidate and

faithfulness constraints which are limited to only ident-type constraints (McCarthy and

Prince 1995).  The restriction on the faithfulness constraints follows Tesar 2004 and is

severely limiting.  No Max or Dep constraints (McCarthy and Prince 1995) are allowed

in the grammar and along with this prohibition on the type of constraints is the necessary

restriction on Gen: it does not produce candidates with inserted or deleted segments.  All

candidates are segmentally identical to the input form.  The faithfulness constraints are

then restricted to the ident-type constraints.  Only changes to the featural specification of

an input candidate are allowed  (and so no deletions, insertions, metathesis, nor

coalescence are permitted).  Though these are not realistic assumptions about naturally

occurring grammars they serves two purposes.

First, they simplify the linguistic system so that the application of the learning algorithm

presented here can be fully analyzed.  By excluding insertion and deletion we are able to

fully characterize both the linguistic system and the learning algorithm applied to the
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languages in the linguistic system.  The application of the learning algorithm and our

understanding of it rely on the learner having knowledge of the correct correspondences

between both input and output segments and between output segments in different overt

forms that share a morpheme.  Inclusion of insertion and deletion in the assumptions

about the linguistic system complicates the assignment of correct correspondences

between input and output and between output and output segments.  Though

determination of input-output and output-output correspondences is a task the learner

must accomplish, most likely concomitantly with determination of the lexicon and

constraint ranking, by removing Max and Dep constraints (and insertion and deletion) we

can focus on two aspects of the learning algorithm, lexicon specification and constraint

ranking.

Second, even though I make the simplifying assumption that the learner does not insert

nor delete segments and is given correspondences between segments the linguistic system

is still complex enough to exhibit patterns that are attested in natural languages.  In the

linguistic systems presented here we find a rich enough system to exhibit contrast,

alternating forms, ambiguous languages, and ambiguous underlying forms.  In this

simplified system some of the issues that arise from these types of complex behaviors can

be solved.  By addressing the issues in a less complex system we may gain insight into

their behavior in more complex environments.

Before any learning occurs the learner is assumed to have full knowledge of the

constraints, though no knowledge of the ranking of the constraints.  Crucial to this



5

learning approach is that the learner has access to all of the constraints of the language at

all stages of learning; learning cannot proceed here unless the learner has the ability to

construct a full grammar of the language.  At any stage of learning, the learner can re-

rank the constraints based on new information gained during the execution of the learning

algorithm.  The re-ranking of constraints need not be incremental, meaning that re-

ranking does not need to only modify the relative ranking of two constraints; one new

piece of information can yield a significantly different hierarchy from the previously

postulated grammar.  This type of potential complete re-ranking is accomplished using

Biased Constraint Demotion (BCD) (Prince and Tesar 1999, see also Hayes 2004).  A

detailed discussion of BCD is given at the end of this chapter but importantly BCD has

the property that given a hierarchy that produces a given set of input-output mappings, if

the learner is presented with one new input-output mapping, BCD applied to the new

(and old) input-output mappings may produce a significantly different ranking.  There is

no guarantee that only two constraints will be re-ranked in the application of BCD to one

new form.

The overt forms of the language

I assume that the learner initially has access to all of the overt forms of the language.

These overt forms are the words of the language and may be composed of more than one

morpheme.  Prior to any learning the learner is aware of the morphemic decomposition of

the overt forms of the language.  The learner is aware not just of the morphological

categories of the language and the segmentation of the overt forms but of the morphemic

identities of the morphemes in the overt forms of the language.  The learner knows all of
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the morphemes of the language and their corresponding allomorphs as they appear in the

overt forms of the language.  This information comes to the learner by fiat; no learning

occurs to determine morphemic identity.  The learner just knows.  How the learner

determines them is beyond the scope of this dissertation but an issue that must be

addressed.  So, while the learner knows the morphemes of the language, it does not know

what the underlying specifications for a particular morpheme or overt form are nor does

the learner know what the ranking of the constraints are, that is, the learner does not

know the grammar that maps the given (unset) underlying forms to the given overt forms.

The assumption that the learner obtains the morphemic decomposition of the overt forms

of the language independent of learning the underlying forms and ranking is untenable

for a comprehensive theory of learning.  Possible morphemic composition of the overt

forms of a language is affected by the grammar of the language and the underlying forms

of the language and vice versa.  Learning the morphemes of a language is intertwined

with the learning of the grammar and the underlying forms.  Even so, isolating the

learning of underlying forms and the grammar from the learning of morphemic

decomposition yields information about the nature of the learning problem.  This in turn

may give insight into the intertwined problems of learning the morphemic decomposition

of words, their underlying forms, and the grammar that produces their overt forms.

The lexicon

The lexicon in this learning algorithm consists of a set of morphemes each of which is

identified with a set of segments in the overt forms (the morpheme’s allomorphs) and
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with an underlying phonological specification.  So morphemes are basic primitives in the

lexicon and have an associated set of allomorphs and a underlying phonological

representation.  Prior to learning the learner is given the identity of the morphemes of the

language and each morpheme’s set of allomorphs but no information regarding the

underlying phonological specifications of those morphemes.  Throughout the learning

algorithm underlying phonological forms for morphemes may remain unset with respect

to some or all phonological features.  Learning the lexicon in this situation means setting

all phonological features for all of the morphemes.  After all learning stages are

completed the learner must have set each feature for each morpheme.  A learned lexicon

does not allow unset features.

The ban on unset features is a restriction on the final lexicon.  Unset features are allowed

throughout the learning stages.  This is not to say that underspecified features are

allowed.  Underspecification is a distinct theoretic notion from unset features in the

lexicon.  I assume that underspecified features do not exist in the learned lexicon nor do

they occur in the lexicon during learning.  Underspecification is not allowed in this

linguistic system.  Features are allowed during learning to be unset, meaning that the

learner does not know what the feature value is and must determine a value before the

learning is said to be completed.  Though I do not allow underspecification the results

here could be extended to a system that does allow it.  Underspecification of a feature can

be viewed as simply another feature value for that feature; for example, in a system that

allows underspecification, a vowel may be specified as long, short, or unspecified for

length.  In effect, length becomes a three-valued feature with underspecification.  During
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learning, features initially are unset and learning a feature value for a morpheme in a

system that allows underspecification would mean determining the value for that feature

or whether it is underspecified in the learned lexicon.  So with regards to the length

example above, initially a vowel would be unset and the learner must determine whether

the vowel is short, long, or unspecified for length.  It is important to note that in the

learning algorithm presented here an unset feature means an unknown feature value for

the learner.

Section 1.2.1  New and not new

Learning underlying forms and the grammar that produces a language is not a new

question and research continues on this topic today.  A select subset of recent research

includes Pater (to appear), Jarosz 2006, McCarthy 2005, Bermudez-Otero 2003, Albright

2002, Tesar et al. 2003, Tesar 2004 and Apoussidou 2007 each of whose approach either

uses a different set of basic assumptions from the work pursued here or differs

substantively in focus.

Pater’s work uses inconsistency detection to create new constraints to account for lexical

exceptionalism.  His focus is on exceptional forms using an approach not incompatible

with what is presented here.  Jarosz posits a function that assigns probabilities to different

grammars and a probability maximizing function that applies to the probabilistic form of

Optimality Theory she assumes.  These assumptions of the underlying grammar

fundamentally differ from those assumed here.  Bermudez-Otero uses a stratal OT theory
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and a technique of isolating forms that give rise to opaque behavior from the learner

while the learner is attempting to learn the “core” grammar.  This theory, while different

from the one posited here and focusing on a different learning issue (that of opacity) is

not necessarily incompatible with the theory given in this dissertation.  Determination

and isolation (until a later stage of learning) of forms that give rise to opaque phenomena

could be a useful extension of the learning algorithm presenting herein.  McCarthy also

focuses on forms that yield opaque phenomena.  His approach makes the assumption that

non-alternating forms may have an underlying form that differs from its surface

representation – an assumption at variance with the approach taken here.  Apoussidou

while looking at similar questions as those raised in this dissertation focuses on

comparing the Gradual Learning Algorithm (GLA) (Boersma and Hayes 2001) and

Constraint Demotion (CD) (Tesar 1995) to learn the lexicon and constraint ranking.  Her

focus on ambiguous structure and the use of GLA differentiates her approach from the

one taken here.  The Surgery Learning Algorithm of Tesar et al. while adopting a similar

linguistic framework restricts the learner to single changes in the lexicon and allows the

learner to set features incorrectly without knowledge of the locus of error, unlike the

approach taken here.  As discussed in ch. 7 below the Contrast Analysis approach of

Tesar 2004 uses similar assumptions about the linguistic theory of the learner, though as

will be shown this approach generalizes the capabilities of the Contrast Analysis learning

procedure.  Albright’s restricted model of UR discovery (Albright 2002) requires that the

underlying form of a morpheme match one of its surface realizations.  This algorithm

does not make that assumption and as discussed in ch. 6 languages like Palauan

demonstrate that this is an assumption that should not be made.
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While the approaches listed above use variously different assumptions in their theories

there is a set of theories and tools that this dissertation relies fundamentally on and builds

directly upon.  Basic to this theory (and many of the above theories) is error-driven

learning (Wexler & Culicover, 1980).  The form that error-driven learning takes here is

that of Multi-Recursive Constraint Demotion (MRCD) (Tesar 1997).  In MRCD, for a

given underlying form and its corresponding overt form, the underlying form is parsed

using a given initial hierarchy.  If the produced overt form is not the target overt from, an

error has occurred and learning proceeds by the creation of a winner-loser pair (Tesar et.

al. 2003) and the application BCD (Prince and Tesar 2004) to the resultant pair (along

with all other previously created winner-loser pairs).  In this manner a hierarchy is

produced that generates the overt forms of the language.1

This dissertation proposes the novel application of this form of error-driven learning to a

particular set of underlying forms, called local lexica (described below), for a contrast

pair (Tesar 2004).  This new approach to searching the lexical and ranking space will

prove to greatly reduce the search space while providing useful information to the

learner.  In addition, this dissertation provides a new mechanism, called the join (defined

in Chapter 4), for determining ranking information from ERCs (Elementary Ranking

                                                  
1 In this dissertation all applications of MRCD and error-driven learning were calculated
by hand.  While some work has been done to automate the production-directed parsing
needed to use MRCD, the linguistic systems here have not been implemented in such
automated systems.



11

Conditions) (Prince 2002) in the face of uncertainty.  When a learner is presented with

two ERCs one of which is true but not necessarily both and the learner is uncertain of

which is true, the join operator will produce that ERC that captures the ranking

information that both share.  This join operator is then used to produce a new mechanism

for extracting all ranking information from a collection of sets of ERCs, again, in the face

of uncertainty.  This procedure relies on modifying the given ERC sets using fusion

(Prince 2002), a binary operation on ERCs that produces an ERC that is entailed by each

individual ERC (Prince 2002).  The mechanism proposed in this dissertation for

extracting shared ranking information is maximally informative producing a set of ERCs

that captures all shared ranking information.

Section 1.3 The stress-length linguistic system

The above assumptions are restrictions on linguistic systems that ensure that the methods

presented below apply.  In this section I discuss one such linguistic system, the stress-

length system, and in the next chapter explore the consequences of applying the learning

algorithm to languages in this system.  Overt forms are severely restricted in both

features and segmental composition here.  This linguistic system only allows two

features, stress and length, each of which is a binary valued feature.  Each overt form

consists exactly of one root morpheme and one suffix morpheme.  Root and suffix

morphemes also are restricted in length to exactly one syllable.  So for any overt form in

any language in this system there are at most sixteen possible underlying representations

for the given overt form; the root may be short and unstressed, short and stressed, long



12

and unstressed, and long and stressed; the suffix may also be underlyingly one of these

four combinations and consequently, the overt form itself may come from any one of the

sixteen combinations of the root and suffix.  Given the set of constraints and features in

this linguistic system, for any given language there can be at most four distinct roots and

four distinct suffixes.  For this reason, I restrict the number of morphemes in the lexicon

for a given language to at most four roots and four suffixes.

For each of the two features there is a faithfulness constraint, Ident(stress) and

Ident(length) (McCarthy & Prince 1995).  The Ident(stress) constraint states that a stress

feature on the surface must be identical to its underlying stress and the Ident(length)

constraint states that a length feature on the surface must be identical to its underlying

length.  There are also four markedness constraints in this system.  Two refer only to the

placement of stress, MainLeft and MainRight (McCarthy & Prince 1993).  MainLeft

prefers stress to be on the leftmost syllable while MainRight prefers stress on the

rightmost syllable.2  One constraint disprefers long vowels, *V: (Rosenthall 1994), and

the final constraint Weight-to-Stress principle (WSP ) (Prince 1990) disprefers long,

unstressed vowels.  All the constraints are listed below.

1. Ident(stress) The stress value must be identical to its input correspondent
2. Ident(length) The length value must be identical to its input correspondent
3. MainLeft Stress must fall on the leftmost syllable
4. MainRight Stress must fall on the rightmost syllable
5. *V: Do not have a long vowel
6. WSP If a vowel is long it must be stressed

                                                  
2 Because stress in this idealized system falls on a syllable and forms are always bi-
syllabic gradient evaluation considerations are obviated.
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The language learner however does not attempt to learn a linguistic system; the

assumption here is that knowledge of the linguistic system is innate.  That is, the learner

knows all of the constraints and, furthermore, is given the morphemic decomposition of

the overt forms for the language the learner is attempting to acquire.  Given the linguistic

system and the overt forms of the language along with their morphological composition

the learn must determine the ranking and the underlying forms of the language.

Section 1.4 Contrast pairs

Learning a language is a search problem.  The learner must determine what the

underlying forms of the language are and what the ranking of the language is; in effect

the learner must search the space of possible lexica and rankings to find the correct

grammar for the given overt forms the learner is presented with.  Considering every

possible lexicon and ranking combination is an untenable search strategy.  Consider a

simple language consisting of 15 constraints and 100 possible lexica.  There are 15! x 100

≈ 1.3 x 1014 possible grammars.  Were the learner to consider each possible grammar in

succession taking one second to evaluate any given grammar it would take only slightly

over 4 million years to evaluate all of them.  Clearly exhaustive search of the possible

grammars cannot work in any sort of feasible time frame.

Some of the size of the search space comes from the combination of considering both

possible lexica and possible rankings in combination.  While a reduction in the search
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space size obtains by considering lexica and rankings in isolation it is not a tenable search

strategy.  A lexicon is only consistent with a set of overt forms given a particular ranking.

And similarly a ranking is only consistent with a set of overt forms given a particular

lexicon.  This interdependence precludes searching the lexical hypothesis space

independently of the ranking space (and vice versa).  The learner must consider lexica

and rankings together.

Even though lexica and rankings together must be tested for consistency it is not

necessary for the learner to consider an entire lexicon in conjunction with a given ranking

to determine information about the target grammar.  The learner is able to extract ranking

and lexical information by considering single overt forms and the possible lexica and

rankings that produce that overt form.  This is the type of approach used in the Prince &

Tesar (1999).  While able to extract some information it is not able to determine an entire

grammar in most situations.  A single form is too impoverished to yield the types of

information needed to for the learner to learn the language.  The learner must focus on a

larger unit of data.

I propose that the learner uses contrast pairs to extract lexical and ranking information

from the overt forms guiding the learner through the search space in an efficient manner.

Contrast pairs are pairs of overt forms that differ in one morpheme and contrast on some

phonological feature.  In English the word ‘cats’ ([kæts]) and the word ‘dogs’ ([dgz])

form a contrast pair.  They both contain the plural morpheme, though with different
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surface realizations of that morpheme, and they differ on their root morphemes.  They

also contrast on the surface both in their root and suffix.  Note that contrast pairs need not

contrast minimally.  The roots of these two forms differ on many features.

Contrast pairs will prove to be useful for two reasons: extracting information from them

can vastly reduce the search space and they can be informative.  Searching the entire

lexical space for the correct set of underlying forms can be prohibitively time-consuming.

Turning to the linguistic system presented above, a language of the system may have 8

morphemes in its lexicon (4 roots and 4 suffixes).  Each of these morphemes can have

one of four possible underlying representations (there are 2 binary features and each

morpheme is specified for each of the features).  This leads to a lexical space of size 48 =

65,536.  If the learner attends only to contrast pairs and their lexica, a greatly reduced

search space is encountered.  Since each overt from consists of two morphemes and a

contrast pair shares a morpheme across the overt forms, each contrast pair consists of 3

distinct morphemes.  These 3 morphemes each may have 4 potential underlying forms

leading to a lexical space to search of size 43 = 64, significantly smaller than the total

space of 65,536.  If information about the lexicon and ranking can be extracted from

contrast pairs efficiently and effectively, this can lead to a great reduction in the lexical

search.

In fact, information about both the lexicon and the ranking can be extracted from contrast

pairs (Tesar 2006, Merchant and Tesar 2006b).  Returning to the contrast pair ‘cats’ and

‘cads’, the plural morpheme surfaces differently in the morphological environment ‘cat’
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than it does in the environment ‘cad’.  Because the plural has only one underlying

specification the difference in its surface representation comes about because of the

grammar.  The ranking of the constraints determines that the plural morpheme surfaces

differently in these two environments and this contrast pair requires some grammatical

account of contrast.  Furthermore, because these two forms differ in only one morpheme

(namely their root morphemes) and they differ on their surface we can determine the

locus of lexical difference.  The morphemes ‘cat’ and ‘cad’ must be different in their

underlying specifications or else they could not differ on the surface in this contrast pair.

Ranking information is needed to explain the different surface allomorphs of the plural

morpheme and lexical information is needed to explain the different surface

representations of the root morphemes.  Both types of information are needed to explain

the surface contrast of these two overt forms and importantly both types of information

are extractable from contrast pairs.

Section 1.5 Local lexica

The extraction of lexical information and ranking information from a contrast pair stems

from the investigation of possible underlying forms for the contrast pair in question.

During learning the morphemes of a contrast pair may have some feature values that are

set and some that are unset.  A full assignment of values to the features of the morphemes

of the contrast pair is called a local lexicon for the contrast pair (Merchant & Tesar

2006a).  A local lexicon for a contrast pair is a hypothesis about what the underlying

specifications of the morphemes of the contrast pair are.  The collection of all possible
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assignments of underlying values to the unset features of a contrast pair constitutes the

local lexica for that contrast pair.

Some local lexica for a contrast pair will be untenable.  That is, a local lexicon for a

contrast pair is a hypothesis about what the underlying lexicon is.  Since the set of local

lexica for a contrast pair consists of all possible hypotheses about the underlying lexicon

some of the hypotheses may be incorrect.  A necessary condition for a local lexicon to be

the correct lexicon, though not sufficient, is for there to exist a ranking that maps the

underlying forms with the local lexicon’s specifications to the given overt forms.  For

some local lexica no ranking will map the underlying forms to the given overt forms.  It

is through testing local lexica for a given overt form that information about the lexicon

and ranking will be extracted from contrast pairs.

Suppose the learner is attempting to acquire a language from the linguistic system given

above.  This system has two features and has overt forms consisting of a mono-segmental

root and suffix.  The learner encounters the two overt forms dáa.ka and ta.ká which

constitute a contrast pair.   The first overt form consists of a long, stressed root and a

short, unstressed suffix while the second overt form consists of a short, unstressed root

and a short, stressed suffix.  For discernability reasons each syllable (which corresponds

directly to a morpheme, either a root or suffix) is introduced by a consonant that

represents morphemic identity.  So these two overt forms share a suffix, namely the ‘ka’

suffix (though ‘ka’ surfaces unstressed in the first overt form and stressed in the second)

and they differ on their roots, the first overt form having the root ‘daa’ and the second
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having ‘ta’.  Because the two overt forms differ on one morpheme and surface differently

they constitute a contrast pair.  For this contrast pair, if all features of the three

morphemes are unset there are 43 = 64 local lexica for this contrast pair.  The learner

must determine which of the local lexica are consistent local lexica.  That is, for which of

the local lexica is there a ranking that maps those underlying forms with the local lexicon

to the given overt forms.  This determination of consistency must be done efficiently

because it forms the crucial computational step that is repeated throughout the proposed

algorithm.  The learner uses biased constraint demotion (BCD) with multi-recursive

constraint demotion (MRCD) (Tesar 1997) to determine the consistency of the local

lexica, an algorithm guaranteed to produce a correct determination of consistency for

each local lexicon.

Consistent local lexica for a given contrast pair may be used to correctly set underlying

features of morphemes in the contrast pair and to determine ranking information about

the target language.  The issue faced by the learner though is that it does not know which

local lexicon is correct; accepting ranking restrictions imposed by a consistent but

incorrect local lexicon could yield incorrect information about the target language.  This

issue can be circumvented by determining what the ranking restrictions are that are

shared across all the consistent local lexica.  In this way the learner can determine

ranking restrictions from the contrast pair.  The learner can also extract lexical

information from the consistent local lexica.  If a feature value for a given morpheme has

the same value in all consistent local lexica the learner knows that this is the correct value
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for that feature.  Having the same value across consistent local lexica means having the

same value as the correct lexicon because the correct lexicon is a consistent local lexicon.

Section 1.5 Inconsistency detection

Here I discuss how MRCD determines whether a given local lexicon is consistent by

investigating its application to the contrast pair dáa.ka and ta.ká.  Assuming that no

features for the three morphemes are specified there are 43 = 64 local lexica for this

contrast pair.  Consider the local lexicon that has each morpheme underlyingly unstressed

and short.  This local lexicon will be inconsistent for this contrast pair.  This is clear; the

overt forms differ on the surface and consequently must differ underlyingly.  While clear

to the analyst the learner needs an algorithm to determine this.  Multi-recursive constraint

demotion (MRCD) is such an algorithm.

Before describing MRCD some definitions are needed.  A winner-loser pair (Prince &

Tesar 1999) is a pair of overt forms and an input such that one of the overt forms, the

“winner”, is the optimal candidate that the grammar produces from the given input.  A

winner-loser pair can be identified with a comparative tableau (Prince 2000).  A

comparative tableau is a tableau that captures the preferences the constraints for the

winning candidate, the losing candidate, or their indifference between the two candidates.

It does not represent the number of constraint violations a candidate incurs.  Consider the

input of /ta.ka/ where both morphemes consist of short and unstressed segments and the

two outputs of ta.ká: and tá:.ka where ta.ká: is the winning candidate.  Then in 7 below
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is the comparative tableau created from this winner-loser pair.  The markedness

constraints WSP and *V: have no preference between the two output candidates; each

does not violate WSP and each violates *V: once.  Because they have equal violations for

both markedness constraints (and not no violations) the tableau records the constraints’

non-preference with an empty cell (in Prince 2000 this is represented with an ‘e’).  The

winning candidate incurs one violation of ML and the losing candidate no violations of

ML.  This is represented with an ‘L’.  ML prefers the ‘L’oser.  The winning candidate

violates MR not at all and the losing candidate violates MR once.  This is represented

with a ‘W’.  MR prefers the ‘W’inner.  The faithfulness constraints don’t prefer either

winner or loser since each violates both constraints equally.

7. Comparative tableau for the two overt forms ta.ká: and tá:.ka

WSP *V: ML MR Id(s) Id(l)
1 ta.ká: ~ tá:.ka L W

Multi-recursive constraint demotion relies upon BCD to produce hierarchies.  BCD itself

relies upon winner-loser pairs to produce a stratified hierarchy.  Given a set of winner-

loser pairs BCD’s first step is to inspect the constraints and determine if there are any that

only either prefer the winner or have no preference in each of the given winner-loser

pairs.  Such constraints are now potentially rankable by BCD – that is, available for

placement in the highest stratum.  So in the example below with three winner-loser pairs

and five constraints (four of which are markedness constraints, signified by the initial

‘M’, and one of which is a faithfulness constraint) BCD determines that both M1 and M2

are rankable.
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8. Winner-loser pairs BCD will produce a hierarchy from

M1 M2 M3 M4 F
1 W e e L e
2 e e W L W
3 e W L e L

These two constraints, M1 and M2, are then placed in the highest stratum together and

the constraints M1 and M2 are removed from further consideration during the ranking

procedure.  Furthermore the winner-loser pairs that had a W in these now-ranked

constraints are also removed from further consideration during the ranking procedure.

The ranking of the constraints that have a W for these winner-loser pairs in effect

“solves” these winner-loser pairs.  The resultant hierarchy is now guaranteed to prefer the

winner over the loser in these winner-loser pairs.  After removing these constraints and

winner-loser pairs BCD proceeds to apply the same steps to the remaining constraints and

winner-loser pairs.  In this case there remain three constraints and one winner-loser pair

and BCD has constructed the incomplete stratified hierarchy {M1, M2}.

9. Winner-loser pairs and constraints remaining

M3 M4 F
2 W L W

With the one remaining winner-loser pair BCD again inspects the constraints to

determine if there are any that prefer either the winner or are indifferent and finds that in

fact there are two, M3 and F.  Under the constraint demotion algorithm both M3 and F

would be placed in a stratum below the {M1, M2} stratum nearly completing the
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construction of the stratified hierarchy.  But this is biased constraint demotion.  The

algorithm is biased against faithfulness constraints, so that when there is an option of

ranking a set of constraints the algorithm will only choose markedness constraints.  So

here, the algorithm could rank M3 and F (or only F), but because it is biased against

faithfulness constraints BCD selects only the markedness constraint M3 and places that in

a stratum immediately below the previously constructed stratum {M1, M2}.  This results

in the partially constructed stratified hierarchy of {M1, M2} >> M3.  BCD then proceeds

merrily on its way by doing what it did before: remove the constraint M3 from

consideration and that winner-loser pair which M3 preferred the winner over the loser in.

Remaining now are no winner-loser pairs and two constraints, M4 and F.  BCD is stilled

biased against faithfulness constraints so even though neither constraint disprefers the

non-existent winner-loser pair BCD will rank M4 immediately below the previously

constructed stratum and then will rank F at the bottom of the hierarchy producing the

stratified hierarchy below.

10. Final hierarchy produced by BCD

{M1, M2} >> M3 >> M4 >> F

Given a set of consistent winner-loser pairs BCD will always produce a hierarchy that

will prefer all of the winners over all of the losers.  BCD also has the property that given

a set of inconsistent winner-loser pairs the algorithm will fail to produce a hierarchy.

This, of course, is not a failure of BCD but a benefit.  Given a large set of winner-loser
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pairs it can be exceedingly difficult for the analyst to determine if they are consistent or

not – that is, to determine whether any hierarchy could produce the given set of input-

output mappings captured in the winner-loser pairs.  Furthermore, because BCD is an

efficient algorithm for determining a hierarchy or for determining inconsistency (being

O(n) where n is the number of constraints) it is a useful tool for the learner.  Failing to

produce a hierarchy is positive information; with a fixed set of constraints, a learner now

knows that the current input-output mappings are wrong and must take corrective steps.

Now, multi-recursive constraint demotion with BCD first applies BCD to the empty list

of winner-loser pairs producing a hierarchy with markedness constraints over faithfulness

constraints.  This hierarchy is then used to evaluate one of the overt forms, let us choose

ta.ká.  The initial hierarchy used to parse this form with the underlying specification of

‘ta’ being short and unstressed and ‘ka’ being the same produces the output tá.ka.  This

creates a winner-loser pair which is added to the (previously empty) list of winner-loser

pairs upon which BCD is run.  The winner-loser pair and resultant hierarchy are given

below.

11. Winner-loser pair produced from MRCD

WSP *V: ML MR Id(s) Id(l)
1 ta.ká ~ tá.ka L W

12. Resultant hierarchy from BCD

{WSP, *V:, MR} >> ML >> {Id(s), Id(l)}
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This hierarchy then maps the input /ta.ka/ correctly to the output ta.ká.  It is now used to

parse the input /da.ka/.  Recall that the three morphemes ‘ta’, ‘da’, and ‘ka’ all have the

same underlying feature values: short and unstressed.  MRCD is used recursively on the

input /da.ka/ until a hierarchy that produces the correct output is achieved or until

inconsistency is determined.  The first parse of /da.ka/ unsurprisingly produces the same

output as /ta.ka/ since they have the same underlying forms.  This produces another

winner-loser pair.

13. Winner-loser pair produced from MRCD

WSP *V: ML MR Id(s) Id(l)
1 ta.ká ~ tá.ka L W
2 dáa.ka ~ da.ká L W L L

BCD is then applied to these two winner-loser pairs and reaches inconsistency.  The first

winner-loser pair requires that MR dominate ML while the second winner-loser pair

requires that ML dominate MR (along with *V: and Id(l)).  Clearly no ranking can satisfy

these two conflicting requirements.  MRCD has determined that this local lexicon is

inconsistent.  The learner will need to apply this approach to each of the local lexica for

the contrast pair, determining in succession which of the local lexica are viable

candidates for the underlying forms of the morphemes in the contrast pair.

Contrast pairs and their local lexica and means of extracting information from them are

the main focus of this dissertation.  In the next chapter a full learning algorithm is

presented which demonstrates how the focus on contrast pairs and local lexica can be
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used to extract lexica information towards the goal of learning the languages of the given

linguistic system.
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Chapter 2. Using contrast pairs and local lexica

The question of how contrast and in particular how contrast pairs can yield information

useful to the learner is best understood in the context of a learning algorithm.  In this

chapter an algorithm for learning that uses as its core information block the contrast pair

is given.  The learner is presented with the task of learning underlying forms for a given

set of overt forms and learning the ranking that maps these underlying forms to the given

overt forms.  The two problems of determining the underlying forms and producing a

constraint ranking are intertwined.  What the underlying forms are restricts which

rankings are possible and what the ranking is restricts what are possible underlying forms

for a given set of overt forms.

As stated in the previous chapter, in this algorithm I assume that the learner has access to

all the overt forms of the language, their morphological decomposition, and knowledge of

all of the constraints of the grammar.  The algorithm then must assign underlying forms

to the given morphemes and produce a ranking that will map the underlying forms to the

given overt forms.
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Section 2.1. Overview of the algorithm

The algorithm I propose here, CPR: Contrast Pair and Ranking information,3 consists of

three parts, an initial lexical assignment, processing of contrast pairs, and final

specification of underlying forms.  The learner progresses through these stages

sequentially and non-repetitively, the first stage of initial lexical assignment is completed

before the learner progresses to the processing of contrast pairs, and similarly contrast

pair processing is finished and not revisited once final specification of underlying forms

is begun.

Section 2.1.1 Overview of Initial Lexical Assignment Stage

During the initial setting of featural values the algorithm attends to featural values that

never alternate.  Morphemes that have featural values that never alternate are given the

underlying featural value that matches their surface realization (Tesar et al. 2003).

Features that alternate remain unset at the end of the initial setting stage.  The setting of

non-alternating features is guaranteed to never set an incorrect featural value given the

assumptions made here about the linguistic system (Tesar et al. 2003).  Note that at the

end of this stage it is not necessarily the case that any of the overt forms are fully

specified.  If at least one morpheme from each of the overt forms has an alternating

feature then no overt forms will be fully specified.  Also, the learner has no information

                                                  
3 The CPR algorithm presented here is a preliminary version.  The full and final version
of CPR is presented in Chapter 5 which consists of these three stages with a slight
modification to the second stage along with phonotactic learning.
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about the ranking.  Since this algorithm is independent of any knowledge of phonotactics

and no information about constraint rankings is produced all that is obtained from stage

one is the setting of non-alternating features

Setting the feature values that do not alternate has the effect of reducing the lexical search

space for the contrast pair processing stage.  For each feature that is set for a morpheme

there is a concomitant reduction of the number of local lexica by a factor of two for a

contrast pair containing that morpheme.  In this way the initial lexical construction stage

reduces the search space for the contrast pair processing stage.

Section 2.1.2 Overview of Contrast Pair Processing Stage

The second stage of this learning algorithm consists of three parts, error-driven learning

on the fully-specified overt forms, selection of the contrast pair with the least number of

unset features, and setting of featural values for that contrast pair.  These three steps are

repeated until no further changes occur to the lexicon.

Step 1: Error-driven learning on fully-specified overt forms

The first part of this stage of the algorithm attends to those overt forms that are fully

specified.  At the completion of the first stage of the algorithm some of the overt forms

may be fully specified.  Information about the ranking of the target language can be

gained from these forms.  Error-driven learning using MRCD with Biased Constraint

Demotion (Tesar 1997, Prince and Tesar 2004) is applied to these forms.  This error-
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driven learning produces a set of winner-loser pairs that captures information about the

target ranking.  The Elementary Ranking Conditions (ERCs) (Prince 2002) represented

by the winner-loser pairs generated from the error-driven learning restrict the possible

rankings and for the learner reduce the search space by disallowing any rankings that do

not conform to the ranking restrictions imposed by the ERCs.  These winner-loser pairs

are maintained throughout the remainder of the algorithm, both in the second stage of

contrast pair learning and the final lexical assignment stage.

Step 2: Selection of contrast pair

In the second step of the contrast pair analysis stage the learner selects the contrast pair

with the least number of unspecified features (that has at least one unspecified feature).

In the case of a tie the learner randomly selects one of the minimally specified contrast

pairs.  Selecting the contrast pair with the least number of unset features has the potential

to reduce the number of featural combinations considered in the third step of this stage.

By ordering the contrast pairs by number of unset features the algorithm attempts to

reduce the number of featural combinations considered.  Furthermore, the setting of

features for a given contrast pair, as may be accomplished in the third step, may reduce

the number of unset features for later contrast pairs.  In this way the total number of local

lexica for a contrast pair considered may be reduced.

Step 3: Consistency check for local lexica and setting of underlying features

The third step of the contrast analysis stage is to determine which combinations of

underlying features are consistent for the selected contrast pairs and to determine if any
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features may be set.  First, for each combination of possible underlying features, that is,

for each local lexicon, the learner uses error-driven learning with BCD to determine if

that local lexicon is consistent.  So, for the given local lexicon, the learner determines

whether there is a ranking that produces these overt forms from the given underlying

forms with the featural values given by the specified local lexicon.  Error-driven learning

on the fully-specified overt forms produces a set of winner-loser pairs that represent

ranking restrictions on the target language.  These ERCs are used during the application

of error-driven learning on the local lexica.  For some contrast pairs these ranking

restrictions will have the effect of reducing the number of local lexica that are consistent.

Only those rankings that adhere to the restrictions imposed by the ERCs generated in the

first step of this stage are possible for a given local lexicon.  In this way knowledge

gained about the ranking from forms that are fully specified is maintained throughout the

algorithm; the learner attempts to use previously gained knowledge about the ranking

while determining information about the underlying forms.

After determining which local lexica are consistent, for each morpheme and each unset

feature in the contrast pair, the learner inspects the values of that feature in the consistent

local lexica.  If, for a given morpheme, the feature for that morpheme has the same value

in all consistent local lexica the learner sets that value for that feature in the lexicon.  That

featural value is no longer unset henceforth.  In this manner does the learner set

underlying forms using contrast pairs.
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A feature that remains unset after processing of a contrast pair may not be redundant.  If a

feature is unset after processing of a contrast pair the only thing that can be concluded is

that there was insufficient information gained from this contrast pair at this time to set

that feature.  The feature may need to be set to a particular value for the learner to

successfully learn the language.  All that can be concluded is that current knowledge

about the ranking and lexicon is insufficient to determine that.  In fact, a feature that

remains unset after processing of a contrast pair may be set while processing the same

contrast pair later in the algorithm.  This will occur when further information about the

lexicon and ranking cause some previously consistent local lexica to be inconsistent

allowing the feature in question to be set.

This procedure is guaranteed to only set correct featural values.  Indeed, for a given

contrast pair all possible featural combinations are considered by the learner, one of

which is the correct featural setting for the target language.  The local lexicon that has the

same featural settings as the target language is guaranteed to be consistent since the target

ranking will always produce the correct overt forms and since the ranking restrictions

generated from the fully-specified overt forms cannot be inconsistent with the target

ranking.  Now, since a local lexicon with featural settings matching the target lexicon is

consistent, if the learner sets a featural value it must match the target lexicon.  This is

because the learner only sets a featural value if it has the same value across consistent

local lexica and because the target lexicon is always guaranteed to be consistent.  Hence

no incorrect featural values will be set using this method of setting uniform featural

values across consistent local lexica.
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It should be noted that it is possible that no featural values for a given contrast pair will

be set when considering local lexica.  This in fact happens in the example language

presented below.

After completing this third step the learner repeats the three steps of the contrast pair

processing stage, applying error-driven learning on the fully specified forms, selecting

the contrast pair with the least number of unset features, and the setting of consistently

valued features among the consistent local lexica.  The learner repeats these three steps

until no further feature values are set in the lexicon, that is, until no changes have been

made to the lexicon and all contrast pairs have been considered since the last lexical

modification.

Some performance improvements could be introduced to algorithm presented here.

Contrast pairs that have been processed in the contrast pair processing stage need not be

re-processed unless one of two things have happened, either further ranking information

has been gained from the error-driven learning on the fully-specified overt forms, or

further lexical information has been gained about morphemes contained in the given

contrast pair.  If no features have been set for any of the morphemes in a contrast pair and

no further ranking information is known, the processing of the contrast pair will proceed

as it did previously producing no new information.  By not considered these contrast

pairs some efficiency gains may occur.
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Section 2.1.3 Overview of Final Lexical Assignment and Ranking Determination

After the completion of the contrast pair processing stage the learner proceeds to the final

stage, the setting of remaining feature values and the determination of a ranking for the

language.  At the end of the second stage the learner may not have set all of the feature

values for all of the morphemes.  The final stage assigns a value for all remaining unset

features.  A default value is assumed to exist for all features.  The algorithm assigns this

default value for all unset features.  At this point all morphemes are fully specified.

Error-driven learning using BCD is used on all of the overt forms (which are now all

fully specified).  This produces a final ranking assuming that the default value assignment

did not assign any incorrect featural values.  The learner is now done, having produced a

lexicon and a ranking that produces the given overt forms.

In an online version of learning, one in which forms are presented not en masse at the

beginning of the algorithm but appear throughout the learning process and all forms need

be fully specified at all times, an alternative approach to a feature being unset is

compatible with this algorithm.  Instead of having unset features all features would

receive a default value initially and be marked as having a default value.  Those features

that were not set (or changed as it would be in an online version) during the contrast pair

processing stage would receive their default values.  The conclusions about the efficacy

of this approach would still hold in this type of learning environment.
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Section 2.2 Description of entire algorithm in pseudocode

Below is the algorithm in its entirety given in pseudocode.

1. Pseudo-code of CPR.

Stage 1.  Initial lexical assignment
Non-alternating features are set to their surface realization

Stage 2.  Contrast pair processing
Step 1.  Processing of fully specified overt forms

Error-driven learning using BCD is applied to all overt forms that
contain only morphemes that are underlyingly fully specified.  The
winner-loser pairs generated from this are used throughout the
remainder of learning.

Step 2.  Selection of contrast pair
The contrast pair that has the least (though non-zero) number of
unset features and that has not been chosen since the last lexical
modification is chosen.

Step 3.  Setting of featural values of uniformly valued features of
consistent local lexica
For each local lexicon of the contrast pair error-driven learning
using BCD is used to determine whether the local lexicon is
consistent.  Feature values that have the same value across all
consistent local lexica are set in the learner’s lexicon.

Repeat steps 1 – 3 until all contrast pairs have been processed since the
last lexical change.

Stage 3.  Final lexical assignment and ranking determination
A default value is assigned to all unset featural values.  Error-driven
learning using BCD is applied to the fully specified overt forms to produce
a final ranking.

Section 2.3 Application of algorithm

In this section I apply the above algorithm to one of the languages from the linguistic

system presented in Chapter 1.  The linguistic system is given again below.
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Recall that the system contains two features, stress and length, each of which has a binary

value.  Overt forms are bi-morphemic consisting of a root and a suffix.  There are four

markedness constraints and two faithfulness constraints.  The markedness constraints are

MainLeft, MainRight, WSP, and *V: and the faithfulness constraints are Ident(stress) and

Ident(length).  These constraints are given below.

2. Ident(s) The stress value must be identical to its input correspondent
3. Ident(l) The length value must be identical to its input correspondent
4. MainLeft Stress must fall on the leftmost syllable
5. MainRight Stress must fall on the rightmost syllable
6. *V: Do not have a long vowel
7. WSP If a vowel is long it must be stressed

Section 2.3.1 The language being learned

As discussed before, the learner is not attempting to learn this linguistic system.  The

linguistic system is known to the learner.  The learner is attempting to learn a language of

the linguistic system.  The language the learner is attempting to learn in this example

using the above algorithm is given by the ranking below.

8. WSP >> Id(s) >> ML >> MR >> Id(l) >> *V:

In this language WSP is undominated; no long unstressed vowel surfaces.  Stress

placement is determined by the underlying stress feature.  In the case where both root and

suffix are identically specified for stress, stress is placed on the root since ML >> MR.

Alignment and underlying stress completely determine stress placement, underlying

length never does.  But Id(l) outranks *V: so when an underlyingly long syllable is



36

stressed either because of underlying stress or because it is the root (and the suffix is

unstressed) that syllable may surface long.  When a syllable is underlyingly long but not

stressed it will never surface as long even though Id(l) outranks *V:.  This is because

WSP is undominated; an unstressed vowel can never be long.

This language has four unique roots and three unique suffixes that combine to give

twelve distinguishable overt forms.  All the root and suffix combinations and their

outputs under this ranking are given in the table below.  Typographically in the table

below, the initial consonant of a syllable represents morphemic identity.  Roots are

introduced by p, b, t, d and suffixes are introduced by k, g, s, z.4  Long vowels on the

surface are represented by ‘aa’ and short surface vowels by ‘a’.  Surface accent is

represented by bolding of the syllable and by the acute accent diacritic.

9. Mapping of morphemes

/stress, length/ ka /−X/ sá  /+−/ záa /++/
pa    /−−/ páka pasá pazáa
baa  /−+/ báaka basá bazáa
tá     /+−/ táka tása táza
dáa  /++/ dáaka dáasa dáaza

The necessary underlying specifications for each of the morphemes are also given in this

table.  So the root pa must be underlyingly unstressed and short.  The first suffix, ka, has

the property that its underlying value for length does not matter.  This is represented by

an ‘X’ in the first row.  What this means is that a suffix that is underlyingly unstressed

and long will have the same surface realizations in all environments as a morpheme that
                                                  
4 This orthographic representation was suggested by Alan Prince.
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is underlyingly unstressed and short.  In this language a suffix (but not a root) that is

underlyingly unstressed will always surface as unstressed and short, hence there is no

way to distinguish underlying length on suffixes that are underlyingly unstressed.  While

no features are globally neutralized in this language, length is neutralized on suffixes that

are unstressed.

The underlying values given above are necessary specifications for each of the

morphemes in this language; to correctly map these underlying forms to their respective

surface realizations each of the morphemes must have precisely these underlying values

with the exception of ka which must be either unstressed and short or unstressed and

long.  The learner is presented with these twelve overt forms and the morphological

decomposition of these forms.  The learner is given the knowledge that there are four

roots and three suffixes and that each combination of root and suffix maps to the given

respective overt form.  The learner does not have any prior knowledge of the underlying

values nor of the ranking that will produce these mappings.  The learner knows precisely

what is given in the table above except for the underlying values of the morphemes.  It is

the task presented to the learner to determine a lexicon and a ranking that will reproduce

the paradigm as restrictively as possible.

Section 2.3.2 Stage one: initial lexical specification

The first stage of the algorithm assigns underlying values to those featural values that do

not alternate.  Here note that every morpheme except the root baa and the suffix záa have
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at least one feature that does not alternate.  Consider the morpheme pa.  In all

environments, ka, sá, and záa, the morpheme pa surfaces as short.  Because it always

surfaces as short the learner assigns for the length feature for pa the underlying value of

short.  The root pa does alternate with respect to stress and so the learner leaves the

underlying value for stress for pa as currently unset.  The learner then repeats this

inspection for each of the other featural values for each of the other morphemes.  The

results of the initial lexical assignment are given below.

10. Lexicon after initial lexical assignment, ‘?’ means value is currently unset

/stress len/ /stress len/
pa /?−/ ka /−−/
baa /??/ sá /?−/
tá /+−/ záa /??/
dáa /++/

After the initial lexical assignment of non-alternating features three of the morphemes are

fully specified, tá, dáa and ka; their values are completely known to the learner.  Both

features, stress and length, for morphemes baa and záa alternate and hence the learner has

set no underlying values for baa and záa; their values are completely unknown to the

learner at this time.  Since there are two roots and one suffix that are completely specified

the learner knows the underlying specification for two overt forms, táka and dáaka.  The

learner will be able to use this information in the first step of contrast pair analysis.
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Section 2.3.3 Stage two: contrast pair processing stage

Step 1: processing of fully-specified forms

Having specified the initial lexicon in the first stage of CPR the learner moves on to the

second stage, contrast pair processing.  This consists of three steps that are repeated until

no further changes occur in the lexicon.  The first step is applying error-driven learning to

those forms that are fully specified.  After the initial lexical assignment only two overt

forms are fully specified, táka and dáaka.  Error-driven learning using BCD is applied to

both of these forms producing ranking information that the learner maintains throughout

the algorithm.  The results of this error-driven learning are the two winner-loser pairs

below.

11. Results of error-driven learning on táka and dáaka
WSP *V: ML MR Id(s) Id(l)

1 /dáaka/ dáaka ~ dáka L W
2 /táka/ táka ~ taká W L W

These winner-loser pairs impose ranking restrictions on the learner.  The first row,

resulting from the application of error-driven learning to /dáaka/ yields the information

that Id(l) must dominate *V: in any ranking considered by the learner.  The second row

imposes the restriction on the final language that either ML or Id(s) must dominate MR.

These restrictions will reduce the number of consistent local lexica for certain contrast

pairs in the following stage allowing the learner to set more features by ruling out

inconsistent local lexica.   As more overt forms become fully specified the ranking

restrictions imposed by error-driven learning by these overt forms have the ability to
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further constrain which local lexica are consistent, allowing the learner to set more

features.

Step 2: selection of contrast pair

The learner, after applying error-driven learning to the fully specified overt forms, selects

the contrast pair with the least number of unset features with the requirement that it have

at least one unset feature.  Selecting a contrast pair with no unset features would not yield

any new information because the overt forms of such a contrast pair are fully specified

and hence no features need be set for the morphemes of the contrast pair.  For the first

pass over these contrast pairs there are precisely two contrast pairs with exactly one unset

feature, the contrast pair páka ~ dáaka and the pair tása ~ dáasa.  The first pair has the

feature stress in pa unset; all other features in the morphemes pa, ka, and dáa are already

set in the lexicon.  The second pair only has the stress feature of sá unset; tá and dáa are

entirely set and sá’s length is set to short.  All other contrast pairs that do not have all of

their morphemes fully set have more than one unset feature.  The algorithm then

randomly selects one of these two minimally unset contrast pairs, say páka ~ dáaka.

Step 3: processing of contrast pair

The three morphemes in this pair, pa, ka, and dáa, have between them only one unset

feature, the stress of pa, the other features being set during the initial lexical assignment

stage.  Because there is only one unset feature there are two local lexica (one for each

value of the unset feature) for the learner to test consistency of.  The two local lexica are

given below.
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12. Two local lexica for contrast pair páka ~ dáaka
a. Local lexicon 1

/stress len/ /stress len/
pá /+−/ ka /−−/
dáa /++/

b. Local lexicon 2
/stress len/ /stress len/

pa /−−/ ka /−−/
dáa /++/

The learner now applies error-driven learning on this contrast pair for each of these local

lexica.  For the first local lexicon with pa having the underlying specification of plus

stress and minus length the learner determines that it is consistent.  That is, the learner

can produce a hierarchy that produces these two overt forms from local lexicon 1.  The

learner then proceeds to check the consistency of local lexicon 2 determining that that

lexicon is also consistent.  The BCD rankings that confirm consistency are given below.

13. Local lexicon 1 ranking
WSP >> F(s) >> ML >> MR >> F(l) >> *V:

14. Local lexicon 2 ranking
WSP >> F(s) >> ML >> MR >> F(l) >> *V:

15. Consistency check for two local lexica of pair páka ~ dáaka
pa stress Consistent

LL1 − Yes
LL2 + Yes

So the learner determines that both local lexica for this contrast pair are consistent (in this

case with the same ranking, though this may not always be the case), and since both are

consistent no setting of features occurs because the unset feature in this contrast pair, the
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stress of pa, does not have the same value across consistent local lexica.  After

determining that no setting of features occurs, the learner proceeds through the steps of

the contrast pair processing stage again.

Repetition of steps 1 – 3

There are no new fully specified overt forms and so no new winner-loser pairs are

generated in the first step.  The learner selects the next contrast pair that has the least

number of unset features, in this case it is tása ~ dáasa.  A consistency check again

determines that both local lexica for this contrast pair are consistent.  No underlying

forms are set.

The learner then turns to the contrast pair pasá ~ tása which has two unset features, pa

stress and sa stress.  These two unset features yield four local lexica for the learner to test

for inconsistency.

First consider the local lexicon that has pa underlyingly stressed and sá underlyingly

unstressed.  Error-driving learning is applied to the two overt forms of the contrast pair.

BCD first produces a hierarchy from the ERCs from the first step of contrast pair

analysis.  These were the ERCs derived from error-driven learning on the fully-specified

overt forms.  The ERCs and resultant hierarchy are given below.
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16. ERCs from step 1
WSP *V: ML MR Id(s) Id(l)

1 L W
2 W L W

17. Hierarchy produced from these ERCs using BCD
{WSP, ML} >> MR >> Id(l) >> *V:

Error-driven learning starting with this hierarchy determines that this local lexicon is

inconsistent.  The first winner-loser pair results from parsing /pasá/ with the hierarchy

above.  This hierarchy produces the incorrect output pása yielding the winner-loser pair

below.

18. Winner-loser pairs from error-driven learning on the contrast pair pasá ~ tása
WSP *V: ML MR Id(s) Id(l)

1 /pasá/ pasá ~ pása L W L

At this point, error-driven learning applies BCD to all three ERCs (two from the first step

and the newly generated ERC).  BCD tells the learner that these three ERCs are

inconsistent and consequently this local lexicon is not a possible local lexicon for the

contrast pair.  The inconsistency stems directly from the new information gathered from

the newly created ERC.  This ERC is inconsistent with the first ERC generated from the

fully-specified overt forms.  Both ERCs are given below shorn of their input and output

information.
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19. Inconsistent ERCs from error-driven learning
WSP *V: ML MR Id(s) Id(l)

16.1 W L W
18.1 L W L

ERC 16.1 was generated from the fully-specified overt forms and requires that either ML

or Id(s) dominate MR.  The ERC just created while processing this local lexicon require

that MR dominate both ML and Id(s).  Clearly no ranking can satisfy both of these

requirements and consequently the local lexicon is inconsistent.

This procedure is then repeated for the remaining three local lexica.  The results of

applying error-driven learning to the four different local lexica are given below.

20. Results of error-driven learning on all four local lexica

pa stress sá stress Consistent
Local lexicon 1 − − yes
Local lexicon 2 − + yes
Local lexicon 3 + − no
Local lexicon 4 + + no

For this contrast pair only two of the four local lexica yield consistent rankings, the local

lexicon with pa unstressed and sá unstressed and the local lexicon with pa unstressed and

sá stressed.  Across these two local lexica the value of pa is the same, unstressed, and the

learner sets the value of pa in the lexicon to unstressed.  The value of sá is not the same

across consistent local lexica and hence no setting of its featural value occurs.  In this

case the learner has determined from this contrast pair that pa stress necessarily must be
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set to unaccented for there to exist a ranking that can produce the two given overt forms.

From the investigation of consistent local lexica the learner has gained information about

the lexicon, though the learner does not at this stage gain any information about the

ranking that produces these overt forms, only that pa must be unstressed to produce these

two forms.

After processing of this contrast pair the learner proceeds to process all remaining

contrast pairs until no further featural values can be set.  For this language upon

completion of the contrast pair processing stage the learner will have set all featural

values for all of the morphemes in the language.  The final stage of the learning algorithm

then needs not set any default featural values (this will not always be the case as an

example in the next chapter will show) and only needs to produce a final ranking from

the given now fully specified overt forms.  The final stage uses BCD to produce a final

ranking.  The learner applies MRCD using BCD all of the overt forms (that are now all

fully-specified) to produce a final ranking.  The ranking produced is below.

21. Final ranking produced by error-driven learning on all forms
WSP >> Id(s) >> ML >> MR >> Id(l) >> *V:

This is precisely the ranking the learner is attempting to learn.  The learner has now

successfully learned this language having produced a set of underlying forms for the

given morphemes and a ranking that produces the given overt forms from the underlying

forms the learner has specified.



46

Section 2.4 Algorithm performance

CPR succeeds in learning this language and does so by considering only a tiny subset of

the possible lexica for the given morphemes of this language.  Initially the learner is

presented with seven morphemes each of which could have four possible underlying

forms.  So the learner initially has 47 = 16,384 possible lexica to choose from.  In the

execution of this algorithm the learner only considers a total of 24 lexica throughout the

contrast pair processing stage.  This is slightly less than two tenths of one percent of the

total possible lexica the learner needs to discriminate amongst.  Granting that the learner

correctly assigns featural values to non-alternating features (as the learner does in this

algorithm in the initial lexicon construction stage) there still remain six unset features for

a total of 26 = 64 possible lexica for the learner to consider.  This algorithm only

considers slightly more than a third of those.  In fact, for all of the possible languages in

this linguistic system the learner only considers a very small subset of possible lexica for

any given language.  The exhaustive searching of local lexica at the contrast pair level

has the potential to greatly reduce the overall search of lexica at the language level.

The linguistic system given above has precisely 24 unique languages (Brasoveanu 2004).

For any one of the 24 languages the algorithm learns the language; that is, given the overt

forms of one of the 24 languages the algorithm will produce a correct lexicon and a

ranking that will produce the given overt forms from the lexicon the algorithm constructs.
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The first two stages of this algorithm will never set an incorrect lexical value.  The first

stage of initial lexical assignment does not set incorrect values.  This follows from the

assumptions of the linguistic system and is shown in Tesar et al. 2003.  The second stage

of this algorithm also does not set incorrect lexical values.  For a given contrast pair the

learner considers all of the possible lexica for that contrast pair one of which is the

correct lexicon.  Consistency is determined for each of the local lexica.  A feature is set in

the lexicon during this stage if and only if it has the same value in the consistent local

lexica.  Now one of the local lexica is the target lexicon and this lexicon is guaranteed to

be consistent.  So if a feature is set it must agree with the target lexicon.  Hence no

features are incorrectly set during the contrast pair processing stage.

In the linguistic system detailed above the third stage of the algorithm, final lexical

assignment and ranking determination, does not set any features incorrectly.  For any

given language in this system that the algorithm does not set all of the features for during

the first two stages any remaining unset features are set correctly via default assignment.

Furthermore, in every case these features that are not set in the first two stages are not

contrastive.  So any setting of these features in the third stage of the algorithm would

result in a correct lexicon.  The learner did not just get lucky by having the default values

be the necessary values for these features.  All features that had necessary values were set

in the first two stages of the algorithm.

The first two stages of this algorithm are guaranteed to be correct and in this linguistic

system the third stage unavoidably assigns correct underlying forms.  The second stage of
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the algorithm need not set all contrastive features though.  In this linguistic system it is

the case that all contrastive features are set in the second stage but as shown in the next

chapter it is possible for a contrastive feature to not be set in the second stage.

Attempting to determine a ranking in the third stage will lead to inconsistency

highlighting the fact that the contrast pair processing stage did not set a contrastive

feature.

The next chapter demonstrates precisely such a linguistic system.  The algorithm

presented here only extracts lexical information from the contrast pairs and not ranking

information.  As will be shown it is the lack of extraction of ranking information that

leads the current version of the contrast pair processing stage to not set a contrastive

feature and the use of that extracted ranking information that will allow the learner to

determine more contrastive features of the language.
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Chapter 3. Limits of local lexica

The process of considering all local lexica for a given contrast pair yielded complete and

correct results for the linguistic system presented in the previous chapter.  But what are

the limits of this algorithm?  In a more feature-rich environment with constraints that

impose a more complex interaction amongst those features the previous algorithm can

fail to yield a complete lexicon and concomitant ranking.

In the previous system when there was ambiguity over which feature was driving the

surface contrast the algorithm was able to resolve the ambiguity by considering only

lexical information conveyed by the contrast pair at hand and the ranking information

from the fully-specified overt forms.  In the linguistic system presented below this

information is not sufficient to resolve this type of ambiguity.  By introducing a third

feature and introducing a markedness constraint that relates all three features (amongst

other constraints) there will be contrast pairs whose surface contrast on two of the

features can be explained by either of two features in isolation but not together.  That is,

for any given contrast pair either of two features could explain the surface contrast but

the contrast pairs all together require precisely one of the features to be set a certain way.

This cross contrast pair implication is lost by only considered lexical information from a

contrast pair.  This chapter will demonstrate how this information can be lost by applying

the algorithm from the last chapter to a system that has this property and will show that

the information that is needed comes from extracting ranking information from contrast
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pairs that are not fully specified.  The following chapter will present an algorithm for

extracting this shared ranking information.

Section 3.1  A linguistic system with three features

This linguistic system builds on the system presented in the previous chapter.  It contains

three features, two contained in the previous system, stress and length, and a third binary

feature, aspiration.  Underlying morphemes (which are restricted to single segments) are

then specified for stress, length, and aspiration.5  The constraints from the previous

system are present here along with three new constraints, one of which is a faithfulness

constraint, the other two markedness constraints.  The full set of constraints for this

system is given below.

The faithfulness constraints are listed in 1 – 3.

1. Id(s) The stress value must be identical to its input correspondent
2. Id(l) The length value must be identical to its input correspondent
3. Id(a) The aspiration value must be identical to its input correspondent

The markedness constraints are listed in 4 – 9.

4. ML Stress must fall on the leftmost syllable
5. MR Stress must fall on the rightmost syllable
6. WSP If a vowel is long it must be stressed
7. *V: Do not have a long vowel
8. NoAsp Do not have aspiration (Hammond 2005)
9. *[+s, −l, −a] Do not have a segment that is stressed, short, and not aspirated

                                                  
5 I assume that it is the mono-syllabic morpheme that is specified for these features and it
is not either an underlying vowel or consonant.  These features are an idealized
representation of the linguistic features of stress, length, and aspiration.
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The first three constraints above are faithfulness constraints; the last six are markedness

constraints.  The first two faithfulness constraints are the Ident constraints for the features

stress and length.  The new faithfulness constraint is the faithfulness constraint for the

new feature aspiration; it says simply be identical to the underlying aspiration

specification for a given segment.

Of the six markedness constraints the first four are identical to the markedness constraints

from the previous linguistic system.  The fifth markedness constraint, NoAsp, says that

+aspiration is the marked value of aspiration and that, all other things being equal, the

surface value of aspiration for a given segment should be −aspiration.  This is directly

analogous to *V:, which is a constraint that could be reformulated precisely as *+l, do not

be long.  The final markedness constraint is *[+s, −l, −a] which states that a segment

should not have the feature combination of +s, −l, and −a, that is do not be stressed, short,

and unaspirated.  This somewhat analogous to the constraint WSP which can be restated

as *[−s, +l], do not be both stressed and long.  If one views both length and aspiration as

prominence enhancers the constraint *[+s, −l, −a] can be viewed as saying that a stressed

segment should be have at least one of the prominence markers of length or aspiration if

it is stressed.  So, if a segment is stressed it should also be long or be aspirated to enhance

its prominence (or it could be both long and aspirated).  A segment only violates this
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constraint when it is stressed and lacking in one of the other two prominence features in

the language.6

In defining this linguistic system the same assumptions about word form are made as in

the system from the previous chapter.  Every overt form consists of exactly one root and

one suffix, and every root and every suffix contain exactly one segment.  So, since there

are only three features in the language and each root consists of exactly one segment

there can be at most 23 = 8 unique roots, one for each combination of specifications of the

three binary features.  Similarly, since suffixes also consist of exactly one segment, there

can be at most 8 unique suffixes for any given language in this system.  These eight roots

and suffixes then can combine to produce at most 64 unique forms for those most faithful

languages though the ones investigated in depth here will have significantly fewer forms.

Although this system is limited in its lexicographic bounty it is sufficiently rich in its

complexities to shed light on certain limits of the processing of contrast pairs.

Section 3.2  A description of a particular language in this system

In this section the algorithm is applied to a particular language of this linguistic system.

The algorithm will succeed in setting correctly a large majority of the features of the

given overt forms but will leave unset at the end of the contrast pair processing stage two

crucial features.  The final stage of the algorithm will assign a value to these features

incorrectly and will produce an incorrect ranking for the language.

                                                  
6 English uses aspiration as a prominence enhancer on stressed syllables.  Its relation to
the proposed constraints here will be discussed further in the final chapter.
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One of the unset features remains unset because there is not enough information in all of

the overt forms to determine what language the learner is learning.  The language

presented below is in a subset relationship with another language of this linguistic

system.  Because of this, the overt forms themselves do not contain enough information

to distinguish these two languages.  The other crucially unset feature could be set if

enough information were gathered from the overt forms.  Attending only to the lexical

information given by the contrast pairs does not suffice to set this feature though.  The

ranking for this language is given below.

10. WSP, *[+s, –l, –a] >> Id(s) >> ML >> MR >> Id(l) >> NoAsp, *V: >> Id(a)

Describing this language phonotactically, an unstressed segment is always short and

unaspirated.  Stressed segments are always long and unaspirated or short and aspirated.

Stress itself is free to appear on either roots or suffixes.  Putting these facts together, there

are precisely four phonotactically distinct overt forms in this language,

rhára,  ráara,  rarhá, raráa.

In this language WSP and *[+s, –l, –a] are both undominated (they do not interact since

WSP is a condition on unstressed syllables and *[+s, –l, –a] is one on stressed syllables

and neither plays a determining role in stress placement in this language).  Stress

placement is determined by underlying stress; if both root and suffix are stressed (or

unstressed) the root is stressed since ML >> MR and ML is immediately dominated by

Id(s) as shown below (omitted constraints in the following tableaux do not prefer the
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winner or the loser).  In the next few tableaux the underlying representation of a

morpheme is depicted by a series of three pluses or minuses representing, in sequence,

the underlying value of stress, length, and aspiration.  So in row 1 of the tableau below

the input consists of two identical morphemes both of which are stressed and are

underlyingly short and unaspirated represented by the /+--/   /+--/ in the input column.

The winning output for this input is [+-+][---], an initial stressed, short, and aspirated root

(represented by [+-+]) and an unstressed, short, and unaspirated suffix.

11. ML dominates MR and Id(s) dominates ML

Input Winner~Loser ML MR Id(s)
11.1 /+--/ /+--/ [+-+][---]  ~

 [---][+-+]
W L

11.2 /---/ /+--/ [---][+-+] ~
 [+-+][---]

L W

Morphemes that are unstressed always surface as short and unaspirated.  This comes

about because of two facts.  First, NoAsp >> Id(a) as established in row 12.1 in the

tableau below.  This ensures that in non-stressed syllables +aspiration will not surface.

Now, non-stressed syllables always surface short even though Id(l) >> *V: (tableau 13

establishes this fact).  This pattern obtains because WSP is undominated and states that

unstressed syllables can never be long.

The behavior of length and aspiration is more complicated under stress.  The constraint

*[+s, –l, –a] is undominated in this language and so a syllable cannot be stressed and both

–l and –a.  Since stress must be placed on some syllable and *[+s, –l, –a] is undominated
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a stressed syllable must be either long or +a to satisfy *[+s, –l, –a].  And since Id(l) >>

NoAsp, *V: and Id(a), underlying length will determine the repair mechanism that is

called upon to satisfy *[+s, –l, –a].  If a segment is stressed and underlyingly long then

the syllable will surface as [+s, +l, –a].  The underlying specification of aspiration in this

case does not matter since NoAsp >> Id(a) and *[+s, –l, –a] is satisfied since the segment

is surfacing long.  Similarly, if the segment that is stressed is underlyingly short the

segment will surface [+s, –l, +a].  In this way it satisfies Id(l) and satisfies *[+s, –l, –a] by

being +a.  Again, the underlying specification of aspiration does not matter since length is

determining the means of satisfaction of *[+s, –l, –a].  So even though NoAsp dominates

Id(a) and this configuration prohibits the surfacing of +a on segments that are not

stressed, the constraint *[+s, –l, –a] and faithfulness to length can cause a segment to

surface as +a when the stressed segment is underlyingly short.  In this particular language

the value of aspiration is completely predictable from the values of stress and length; it is

not contrastive in any environment.

12. Non-stressed syllables do not surface as aspirated or long

Input WSP *V: NoAsp Id(l) Id(a)
12.1 /+-+/ /--+/ [+-+][---]

~
 [+-+][--+]

W L

12.2 /+-+/ /-+-/ [+-+][---]
~
 [+-+][-+-]

W W L
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13. Id(l) >> NoAsp, *V:, Id(a)

Input *V: NoAsp Id(l) Id(a)
13.1 /-++/ /---/ [++-][---]

~ [+-+][---]
L W W L

13.2 /---/ /---/ [+-+][---]
~ [++-][---]

W L W L

14. *[+s, -l, -a] >> NoAsp, Id(a), and Id(l) is dominated by Id(s)

Input *[+s,-l,
-a]

*V: No
Asp

ML MR Id(s) Id(l) Id(a)

14.1 /+--//---/ [+-+][---]
~[+--][---]

W L L

14.2 /-+-//+--/ [---][+-+]
~[++-][---]

W L L W W L L

The tableaux 11, 12, 13, and 14 establish the necessary rankings of the language given

above.  Specifically required and demonstrated are that WSP >> Id(l) >> NoAsp >>

Id(a), that Id(l) >> *V:, that *[+s, -l, -a] >> NoAsp, that Id(s) >> ML >> MR, and that

Id(s) >> Id(l).  Applying BCD to the above winner-loser pairs produces the hierarchy

given for this language.

Of the eight possible roots and eight possible suffixes in this linguistic system this

language only exhibits four distinct root behaviors and three distinct suffix behaviors.

The roots distinguish all possible combinations of underlying values of stress and length

and do not distinguish underlying aspiration.  This yields precisely four roots, one for

each value of stress and length.  The suffixes only distinguish length when the suffix is

underlyingly stressed.  In an unstressed suffix the segment will never attract stress and
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hence will always surface as short and unaspirated.  The full behavior of the four roots

and three suffixes are given in the table below.  Typographically, the same notation for

stress and length is used as in the last chapter.  Stressed segments are marked with the

acute diacritic and long segments are signified by ‘aa’.  An aspirated segment is marked

by the superscript h on the onset.  Here again the onset consonant signifies only

morphemic identity, the four roots are denoted with {p, b, t, d} and the three suffixes

with {k, s, z}.  The underlying specifications for each of the morphemes are given in the

order stress, length, and aspiration.  An ‘X’ means that there is no necessary underlying

specification for that feature for that morpheme.  The ‘X’ notation is used for these forms

because richness of the base precludes the analyst from positing a unique underlying

representation for these morphemes given the ranking the learner is attempting to learn.

Now, for example, tá has an underlying specification of /+−X/.  This means that

underlying it is stressed, short, and the value of aspiration can be either plus or minus.

Either value produces the morphemic behavior given in the table below.

15. Mappings of Language L1

The underlying values for this language given above are the necessary underlying

specifications that the analyst has determined, not the learner.  The learner has the

separate task of determining underlying forms for this language without the analyst’s

knowledge.

/stress, length, asp/ ka /−XX/ sá  /+−X/ záa /++X/
pa    /−−X/ pháka pashá pazáa
baa  /−+X/ báaka bashá bazáa
tá     /+−X/ tháka thása tháza
dáa  /++X/ dáaka dáasa dáaza
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Section 3.3.1 The application of the algorithm to this language

The learner is given the twelve overt forms of this language and the morphological

decomposition.  The first stage of the learning algorithm assigns underlying values to

features that do not alternate.  The result of this stage is given below.

16. Initial lexicon after the initial lexical assignment stage

/s l a/ /s l a/
pa /?−?/ ka /−−−/
baa /??−/ sá /?−?/
thá /+−+/ záa /??−/
dáa /++−/

Three of the seven morphemes are now completely specified.  The roots thá and dáa do

not alternate in this language and the learner completely specifies them correctly in the

initial lexical assignment stage.  Similarly the suffix ka does not alternate and the learner

correctly specifies its underlying form in this initial stage.

At this point there are now two overt forms that are completely specified, tháka and

dáaka.  Moving on to the contrast pair processing stage, the learner applies error-driven

learning on these two forms producing a set of winner-loser pairs.  Contrast pair

processing proceeds and all contrast pairs are processed resulting in the setting of four of

the eight features that were not set during the initial lexicon setting stage. The resulting

lexicon after the contrast pair processing stage is given below.
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17. Lexicon after contrast pair processing stage
/s l a/ /s l a/

pa /−−?/ ka /−−−/
baa /−?−/ sá /+−?/
thá /+−+/ záa /?+−/
dáa /++−/

Four features have been set beyond what was set in the initial lexical assignment.  The

morpheme pa is set to unstressed, baa is set to unstressed, sá is set to stressed, and záa is

set to long.  The contrast pairs in which these features figure are given below.

18. Features set during contrast pair processing stage and contrast pairs that yielded
the featural settings
pa   /−,−, ?/ Stress is set to − in contrast pair <pazáa, tháza>
baa /−, ?, −/ Stress is set to − in <bazáa, tháza>
sá   /+, −, ?/ Stress is set to + in <báaka, bashá>
záa /?, +, −/ Length is set to + in < pháka, pazáa>

During the contrast pair processing stage no further morphemes are fully set and

consequently no further ranking information is gained from error-driven learning on the

fully specified overt forms.  Of the four features that remain unset, the aspiration values

of both pa and sá need not be set to any particular value to successfully learn this

language.  Aspiration is fully predictable from the specifications of stress and length and

the underlying value of aspiration is immaterial to the surface realization of this feature

for every overt form.  The aspiration feature in the target lexicon can be any value for any

morpheme, hence if a default value is assigned to aspiration in the final stage no

impediment to acquiring the target language will occur.  A pernicious problem does arise

in the lack of specification of the other two features.
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The length of baa must be set to long for the learner to acquire the correct grammar.

Under the target ranking, repeated below, if baa’s length were set to short, the underlying

form báka would map incorrectly to bháka, when it should surface as báaka. Similarly,

záa must be underlyingly stressed.  The suffix záa in conjunction with root pa will also

map to an incorrect output under the target ranking.  This is shown below.

19. Target ranking
WSP, *[+s, –l, –a] >> Id(s) >> ML >> MR >> Id(l) >> NoAsp, *V: >> Id(a)

20. Incorrect mapping of báaka with baa set to /−−−/
/baaka/ → bháka

21. Incorrect mapping of pazáa with záa set to /−+−/
/pazáa/ → phaza

So default value assignments of unstressed and short given to baa and záa respectively

after the contrast pair processing stage will preclude the learner from determining the

target language.  The two features the learner incorrectly specifies in this language

represent two distinct types of errors a learner can encounter.

Section 3.3.2 Two types of missed information

As stated above the algorithm fails to specify correctly two features and the failure to set

these two features stems from two distinct types of missed information.  The first type is

related to the subset/superset problem; there are two different grammars both of which

admit all of the observed surface data, the target language and another language which

the target language is in a type of subset relationship with.  This superset language has a
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wider range of morphemic behaviors and the learner has no information from the

presented forms to distinguish the two.  In the incorrect language having zaa be

underlyingly unstressed produces the same overt forms as in the target language with záa

underlyingly stressed.  All of the other morphemes in the target language behave

identically to their corresponding morphemes in the superset language and have the same

underlying specification.  Because of the identical behavior and identical underlying

specifications (except for the stress of záa) the learner cannot determine the underlying

value of stress from záa from positive data alone.

The second problem is the incorrect specification of length of the morpheme baa.  The

overt forms given to the learner are not consistent with the morpheme baa being

underlyingly specified as short and yet when the learner encounters a contrast pair

containing baa there is always a ranking consistent with baa being underlyingly short

(and, of course, a ranking consistent with baa being underlyingly long, specifically the

target language).  The learner has failed to determine that no ranking and lexicon with

baa underlyingly short is consistent with all of the overt forms using the technique of

testing local lexica for consistency.  This technique does not convey any ranking

information from contrast pair to contrast pair except when overt forms are fully

specified.  The learner does not extract any ranking information from a contrast pair and

consequently no information besides the lexical information is shared across contrast

pairs.  It is the lack of discernment of shared ranking information across contrast pairs

because the crucial contrast pairs are never fully specified that causes the learner to not

set the necessary feature of length for baa.
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These two problems, lack of discernment of subset/superset relations and lack of

extraction of relevant ranking information present in the contrast pairs (and the full set of

overt forms) are presented in detail in the following two sections.  An outline of a

solution to both problems is also presented.  The following chapter will then continue

with a full solution to the second problem described here.

Section 3.4 Another language of the system and its relationship to the previous
language

The subset problem is usually construed as the problem of selecting between two

languages when one of the languages is phonotactically a proper subset of the second

language and the data presented is consistent with both languages (Angluin, 1980, Baker,

1979).  That is, when all of the overt forms from language A can be overt forms from

language B and all overt forms encountered by the learner so far are consistent with

language A the learner cannot determine which of the two languages it is attempting to

learn using inconsistency detection.  Ideally, the learning algorithm would have a bias

towards selecting the subset language (Prince and Tesar 1999).  Though this is the typical

construal of the subset problem, the subset/superset problem appellation also captures

other types of subset/superset relations that obtain between languages.

Two languages can have the identical phonotactics and be in a morphological

subset/superset relationship (Tesar et. al. 2003).  In this type of relationship there one

language allows more morphological environments.  Because the superset language has
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more morphological environments it also allows more distinctions between the

morphemes of the language in these environments.  In this way, the subset language

contains a subset of morphological environments of the morphological environments of

the superset language.  The language from the previous section and another language in

this system, presented below, are in such a subset/superset relationship.  The ranking of

the language from the previous section is repeated below.

22. Language L1
WSP, *[+s, –l, –a] >> Id(s) >> ML >> MR >> Id(l) >> NoAsp, *V: >> Id(a)

Language L1 is in an environment subset relationship with the language defined by the

ranking given in 20, call this language L2.

23. Language L2
WSP, *[+s, –l, –a] >> Id(s) >> Id(l) >> NoAsp, *V: >> Id(a) >> MR >> ML

The mappings of all of the morphemes in this language are given below.

24. Mappings of L2

/s, l, a/ ka /−−−/ sá /+−−/ zaa /−+X/ rá /+−+/ láa /++X/ xa /−−+/
pa    /−−+/ pháka pashá pazáa parhá paláa paxhá
baa  /−+X/ báaka bashá bazáa barhá baláa báaxa
tá     /+−+/ tháka thása tháza tarhá taláa tháxa
dáa  /++X/ dáaka dáasa dáaza dáara daláa dáaxa
fa /−−−/ fakhá fashá fazáa farhá faláa faxhá
cá /+−−/ cháka cashá cháza carhá caláa cháxa
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Language L2 has six distinct roots and six distinct suffixes as shown in the table above.

These twelve morphemes give rise to 36 overt forms. Language L2 in many ways is

similar to L1.  The phonotactics of L2 are identical to the phonotactics of L1.  There are

four phonotactically distinct overt forms in both L1 and L2: rhára, rarhá, ráara, raráa.  In

L2 the constraints WSP and *[+s, –l, –a] are undominated ensuring that unstressed

syllables will always be short and that stressed syllables will all either be long or +a (or

both).  Lexical specification of stress determines the stress placement since Id(s) is only

dominated by WSP and *[+s, –l, –a].  The languages diverge in that length alone can

determine placement of stress in L2.  In L1, underlying specification for length can never

influence the placement of stress.  This is because ML >> Id(l).  In L1, if stress

placement hasn’t been determined by underlying specification of stress then the

alignment constraint ML requires stress to be on the leftmost syllable.  Only under stress

can a syllable surface as long in L1.  L2 is a different matter though.  Because Id(l)

outranks both alignment constraints and *V:, if stress placement hasn’t been determined

by underlying specification of stress, then length can determine stress placement.  If, for a

given overt form, only one of the underlying morphemes is long then Id(l) will prefer to

have only that morpheme long.  WSP being undominated in L2 will ensure that that

morpheme receives stress (as long as Id(s) does not have a conflicting preference).  This

behavior obtains in báaka which has initial stress even though this language ranks MR

above ML.  Another key difference between the languages is that in L1 ML outranks MR

while in L2 MR outranks ML.  So the default stress pattern in L1 is leftmost syllable

stressed while in L2 the rightmost syllable is stressed.
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25. Language L1
WSP, *[+s, –l, –a] >> Id(s) >> ML >> MR >> Id(l) >> NoAsp, *V: >> Id(a)

26. Language L2
WSP, *[+s, –l, –a] >> Id(s) >> Id(l) >> NoAsp, *V: >> Id(a) >> MR >> ML

The key ranking differences stem from the relative ranking of Id(l) with respect to the

alignment constraints and the ranking relations between ML and MR.  In L1 Align >>

Id(l) and hence length cannot determine placement of stress, while in L2 Id(l) >> Align

and hence length can determine placement of stress.  Default stress placement is reversed

in L1 and L2 because in L1 ML >> MR while in L2 MR >> ML.

Though the two languages differ significantly in their morphemic behavior they have an

interesting property.  There is an injective mapping from the morphemes in language L1

to the morphemes in language L2 such that the overt forms produced by L1 are identical

to the overt forms produced by L2 of the L1 morpheme’s images under the injective

mapping.  That is, there is a way to associate all of the morphemes in L1 with morphemes

in L2 so that any combination of root and suffix of these identified morphemes will have

the same overt form under the mapping of L1 or L2.  The mappings of L1 and L2 are

repeated below to illustrate this phenomenon.
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27. Mappings of morphemes in L1
/s, l, a/ ka /−XX/ sá  /+−X/ záa /++X/
pa    /−−X/ pháka pashá pazáa
baa  /−+X/ báaka bashá bazáa
tá     /+−X/ tháka thása tháza
dáa  /++X/ dáaka dáasa dáaza

28. Mappings of morphemes in L2
/s, l, a/ ka /−−−/ sá /+−−/ zaa /−+X/ rá /+−+/ láa /++X/ xa /−−+/
pa    /−−+/ pháka pashá pazáa parhá paláa paxhá
baa  /−+X/ báaka bashá bazáa barhá baláa báaxa
tá     /+−+/ tháka thása tháza tarhá taláa tháxa
dáa  /++X/ dáaka dáasa dáaza dáara daláa dáaxa

fa /−−−/ fakhá fashá fazáa farhá faláa faxhá
cá /+−−/ cháka cashá cháza carhá caláa cháxa

Language L2 exhibits exactly the same distribution for morphemes pa, baa, tá, and dáa

and for ka, sá, záa as does L1.  That is, by identifying pa in L1 with pa in L2 and ka in L1

with ka in L2 and similarly for baa, tá, and dáa and ka, sá, and záa (záa in L1 is identified

with the nearly orthographically identical zaa in L2) the overt form for any choice of root

and suffix in L1 will be the same as the overt form for the associated root and suffix in

L2.  So, for example, /baa + záa/ → bazáa in L1 and /baa + zaa/ → bazáa in L2.

It is important to note that this behavior of identical overt forms under this morphemic

identification occurs because there is morphemic identity and only morphemic identity.

These morphemes can be identified, producing the identical outputs, but it is not the case

that their corresponding underlying forms are identical.  Nor in fact is it possible for their

underlying forms to be identical in all cases.  There are three types of morphemic

correspondences, those morphemes that are in correspondence with morphemes that have
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the same underlying form, those that are in a subset relationship with their corresponding

morpheme, and those that are different and cannot be in a subset relationship with their

corresponding morpheme.

So first, some of the identified morphemes from language L1 and L2 may in fact be

identical.  For example, baa in L1 may have either of the following two underlying

forms: /−+−/ or /−++/.  The corresponding morpheme baa in L2 may have exactly one

these two underlying forms also.  Whether they have exactly the same underlying form

after learning does not matter, what matters here is that they have an identical range of

potential underlying forms.

Now pa in L1 can be said to have a greater range of underlying forms than its

corresponding morpheme pa in L2.  So, pa in L1 may have either of the following two

underlying forms: /−−−/ or /−−+/.  For any given suffix, with either underlying form, L1

maps pa to exactly the same overt form.  Now its associated root pa in L2 must be /−−+/.

The larger set of potential underlying forms for pa in L1 is a result of a contrast in L2 that

is not present in L1.  In L2 an unstressed, short, aspirated segment, pa, in the environment

of an unstressed, short, and unaspirated segment, ka, surfaces stressed and aspirated as

the overt form pháka demonstrates.  In L2 an unaspirated, short, unstressed root in the

same environment does not receive stress as the form fakhá shows.  L2 is contrastive with

respect to aspiration in this environment while L1 is not.  This causes the underlying form

subset/superset relationship to obtain.
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Finally, the corresponding morphemes may have necessarily different underlying forms.

This is the case for the morpheme záa in L1 and its corresponding morpheme zaa in L2.

The suffix záa in L1 must be stressed and long.  Its aspiration value is immaterial under

the ranking of L1.  Its associated morpheme in L2, zaa, must in fact be unstressed and

long (and its aspiration value is also immaterial).  This is because length is contrastive in

an underlyingly unstressed suffix in L2 while in L1 it is not.   In L1 length is not

contrastive in underlyingly unstressed suffixes since ML dominates both MR and Id(l)

and since undominated WSP precludes length in an unstressed position.  In L2 length is

contrastive in underlyingly unstressed suffixes since Id(l) dominates the alignment

constraints.

So the language L1 can have its morphemes identified with the morphemes in L2 and

have the same distributional pattern.  Furthermore, all of the underlying forms in L1 can

be identical to the underlying forms which they are associated with in L2 with the

exception of precisely one feature of one form, the stress feature of the suffix záa.  This is

the reason that the stress feature of záa is not and cannot be set by the algorithm

presented above.  Even if all other features are set correctly by a learning algorithm given

the data of language L1 the learner, attending only to the overt forms, cannot determine

from inconsistency detection alone which of the two languages, L1 or L2, is generating

the attested overt forms.  This is not the fault of contrast pairs; all of the given forms will

fail to yield information sufficient to determine the target language because the forms

themselves are ambiguous between L1 and L2.  It is a limit of inconsistency detection.
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Section 3.5 Towards a solution of the restrictiveness issue

The distinction between the overt environments that a morpheme appears in and the

necessary underlying specifications of those overt environments appears to lead to a

potential solution to the restrictiveness issue articulated above.  In this section I will

discuss an approach that assumes that non-alternating forms are in fact non-alternating

even in unattested environments.  This will allow the learner to restrict possible outputs

for unattested forms allowing the learner to choose a more restrictive language.  This

approach may lead to the learner being able to distinguish these two languages.  The full

investigation of these ideas will be left to later work.

Neutralization of stress and length occur in suffixes in the context of an underlyingly

stressed root in language L1.  It is this contextually dependent neutralization that has not

been learned and knowledge of which would distinguish for the learner the languages L1

and L2.  Consider the non-alternating morphemes tá and dáa in language L1.

Morphemes ka, tá, and dáa in L1 do not appear in as many environments as in L2.  These

environments are defined by the features that surface overtly.  So, for example, tá and dáa

only appear in the environment [sa] and not in [shá] or [sáa].  In the above approach of

processing contrast pairs the learner has determined that the underlying values of the

three suffixes after the processing of contrast pairs are those given below.
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29. Underlying values of the suffixes in L1 after the processing of contrast pairs.
/s l a/

ka /−−−/
sá /+−?/
záa /?+−/

The suffix ka is underlyingly unstressed short and –a; sá is stressed short and the

aspiration value is undetermined; zá is long, –a, and its stress value is undetermined.

Recall that these specified underlying values for ka, sá, and záa (except for the a values of

ka and záa) are precisely those that are necessarily entailed by the overt forms of

language L1.  The learner then restricts attention to only those forms whose underlying

specification is complete, namely ka.  The suffix ka combined with roots that are

completely specified yield ranking information that the learner then further uses to

restrict potential underlying forms.  Because the learner only uses forms that are fully

specified to restrict local lexicon searches the underlying specification of stress for záa

will remain unset.  Indeed, roots tá and dáa only appear in the overt environment [sa] and

since ka is the only suffix that is fully specified the learner only gains ranking

information by considering tá and dáa in the underlying environment defined by /ka/

(which is to say with the morpheme that has the underlying specification of unstressed,

short, and −a).  If the learner knew the behavior of tá and dáa in underlying environments

/shá/, /sáa/, then it would be possible for the learner to distinguish the languages L1 and

L2.  This is because under L1 /tá + shá/ → thása and hence the learner would know that

ML >> MR since these two morphemes would have the same underlying form.  This

ranking information would be captured in the winner-loser pair given below.
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30. Ranking information gained from previously unattested mapping

/tá+ shá/ WSP *[+s-l-a] NoAsp *V: ML MR Id(s) Id(l) Id(a)
thása ~ tashá W L

So if the learner could have access to the behavior of these morphemes in these

(underlying) environments the languages L1 and L2 could be distinguished.  A problem

arises though in determining what the behavior of these morphemes would be in these

environments.  The linguist can see that in L1 the roots tá and dáa do not alternate and

that the output of /tá + shá/ would be thása.  The learner on the other hand does not have

this information.  The learner does know though that roots tá and dáa do not alternate.

This may be the crucial piece of information the learner could use to further restrict

lexical possibilities for other morphemes.  The learner could assume that non-alternating

morphemes in fact do not alternate in any environment either attested or unattested.  This

assumption, that non-alternating morphemes do not alternate in unattested environments

is already implicitly made.  Initial lexicon construction requires that non-alternating

morphemes truly do not alternate, else the initial specifications of the non-alternating

features could be set incorrectly.  By assuming that non-alternating morphemes do not

alternate ever the learner has an anchor to explore unattested underlying environments for

these non-alternating morphemes.

Though the learner would know what the output of the non-alternating morpheme is the

output for the environment morphemes is still not known.  So, for example, tá does not

alternate and hence the learner would know that tá in combination with the morpheme

/shá/ would surface as [thá].  What the learner would not know is what the morpheme shá
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would surface as.  The linguist knows that under L1 it must surface as [sa] but the learner

would not.  What the learner would know is that since tá surfaces as [thá], the two

morphemes /tá + shá/ must surface as either thása or thásha.  That is, the suffix must be

short and unstressed and either +a or –a.  The learner knows this because all other output

forms for this input that have the root stressed are harmonically bounded by these two

output forms.  By restricting the output of a particular morpheme, namely tá in this case,

further restrictions are placed on the morphemes whose output correspondents are not

known.  These potential input-output mappings then could lead to further restrictions on

the ranking if the learner had a means of extracting shared ranking information across

potential input-output mappings.  The next chapter develops just such a technique.

The approach outlined here, while no means an algorithm, suggests an approach to

determining further ranking information.  Non-alternating forms are assumed to be in fact

non-alternating.  This assumption allows the learner to restrict potential outputs for

unattested and possibly alternating forms.  This restriction of potential input-output

mappings allows the learner to gain ranking information from forms that are not attested.

A full investigation of this approach needs to address whether in general an efficient way

of generating both the unattested underlying forms and unattested overt forms exists.

Section 3.6.1 Failure to extract ranking information

The morphological subset/superset issue for the learner learning language L1 stemmed

from the learner being unable to distinguish between L1 and L2, where L1 is more
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restrictive than the other.  This caused the learner to fail to set the feature for stress for

záa.  The learner also failed to set the featural value of length for the root baa.  This did

not stem from a failure to choose the most restrictive language but from a failure to

extract necessary ranking information from the given overt forms of language L1.  Below

discusses the types of ranking information that the learner fails to extract and

demonstrates this failure in one of the contrast pairs the learner is attempting to extract

information from.

The forms presented to the learner require that the length value of baa be long; the learner

has failed to reach this conclusion though.  The information the learner is attending to in

the contrast pairs does not necessitate this featural specification.  The learner while

processing contrast pairs is only attending to the consistency of local lexica.  There is

more information though present in the contrast pairs.  Failure to set the length feature of

baa comes about because the learner is not attending to ranking information that is

present in the contrast pairs that are not fully specified.

In each contrast pair in which baa occurs, baa’s length value remains unset.  This means

that for each contrast pair there are (at least) two local lexica, one with baa’s length short

and one with baa’s length long, that are consistent.  In each case there are two types of

ranking solutions for the incorrect setting of length (rankings that produce the correct

output but have baa length set to short).  The two ranking solutions require rankings that

are not allowed in language L1.  The two (incorrect) solutions require that either Id(a)

outrank NoAsp or require that Id(l) outrank ML and MR (and some of the incorrect
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solutions require both).  Language L1 requires both NoAsp >> Id(a) and ML, MR >>

Id(l), but in the contrast pairs that contain baa this required ranking information is not

present.  This lack of ranking information prevents the learner from determining that the

underlying value of short for baa is inconsistent with the remaining overt forms.

The only time Id(l) >> ML, MR is required is when a contrast pair contains both záa and

baa.  If záa’s stress were set correctly to + then the non-target language ranking of Id(l)

>> ML, MR would not be required.  Focusing on baa here, in every consistent local

lexicon for a contrast pair containing baa in which baa’s length is short it is the case that a

ranking requirement of Id(a) >> NoAsp is imposed.  Exhaustive investigation of each

contrast pair containing baa has demonstrated this.  Below the case of the contrast pair

<báaka, tháka>  is investigated and shown to have these properties.

Section 3.6.2  Failure to set required features on a contrast pair

Under the target ranking L1, /báa + ka/  → báaka and /tá + ka/ → tháka.  The underlying

specifications for the three morphemes in this contrast pair as set by the algorithm by the

end of the contrast pair processing stage are given below.

31. Set features of morphemes in contrast pair <báaka, tháka>

/s l a/ /s l a/
baa /−?−/ ka /−−−/
tá /+−+/
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All the featural values of these three morphemes are specified with the exception of the

length of baa and hence there are two local lexica for the learner to check for consistency.

The local lexica with baa’s length set to long are consistent under the target ranking of

L1.  The local lexica with baa’s length set to short are consistent with the ranking given

below (amongst others).

32. WSP, *[+s, −l, −a] >> Id(s) >>ML >> MR >> Id(a) >> *V:, NoAsp >> Id(l)

The fact that baa surfaces long and tá surfaces short in the same environment means that

an underlying difference in their specifications must be accounting for the difference.

Stress cannot be the feature that explains the difference since they both surface stressed.

If two morphemes surface stressed in the same environment but differ on aspiration and

length, underlying stress will never account for that difference.  This is because no

constraint says that if underlyingly stressed behave one way (while stressed) and behave

another way if underlyingly unstressed (while stressed), nor do any combination of the

constraints.  This is the type of constraint interaction that what would be needed for

aspiration and length to surface differently under stress because of a differing underlying

specification of stress.  So either aspiration or length must be different for the two root

morphemes.  First consider the case were baa is underlyingly short.

Assuming that baa is short and −a and it surfaces long, either Id(a) or NoAsp must

dominate both Id(l) and *:V.  Now tá surfaces as +a and short and therefore Id(a) must

dominate NoAsp, Id(l), and *:V.  I.e. Id(a) >> NoAsp, *+l, Id(l).  This subranking holds
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because baa is underlyingly short (and surfaces long) and tá is underlyingly +a (and

surfaces +a).  Because *[+s, –l, –a] is undominated, under stress a morpheme must either

be +a or +l, the differing “repair” mechanisms for this constraint must come from

differing underlying specifications.  So, baa being underlyingly short requires the

subranking shown below.

33. Id(a) >> NoAsp, *:V, Id(l)

Now, in the target language there is a crucial ordering between these four constraints that

conflicts with the ranking in 29.  This subranking is given in 30.

34. Id(l) >> NoAsp, *:V >> Id(a)

In fact, in every contrast pair containing baa where baa surfaces stressed baa can be

specified short provided the following the incorrect subranking of 29 above is allowed.

So if the learner knew that the ranking in 30 obtained for the target language the

conflicting ranking in 29 would not be allowed and baa’s length would be set correctly.

These ranking requirements are in fact imposed by other contrast pairs but because the

morphemes of the contrast pairs that require the ranking in 30 are not fully specified

these ranking requirements are not imposed on other contrast pairs.  It is the lack of

discernment of these requirements while processing the contrast pairs that causes the

failure to set the length of baa.  In the next chapter I will develop a technique for
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extracting ranking information from the contrast pairs even when the morphemes of the

contrast pairs are not fully set.  This ranking information then can be used in a slightly

modified version of the learning algorithm presented in chapter 2 to set the length feature

of baa.
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Chapter 4.  The Join

Attending to consistent local lexica for a given contrast pair allows the learner to learn a

significant amount of information about the target lexicon.  But as seen in the last chapter

this approach missed some pertinent information that would be available to the learner by

attending to more overt forms simultaneously because ranking information imposed by

more than two overt forms is not imposed by any given contrast pair.  In this chapter an

approach is given that maintains the learner’s focus on contrast pairs only but extracts

further ranking information.  By attending to not just consistent local lexica for a contrast

pair but the ranking restrictions imposed by those consistent local lexica the learner can

glean ranking information about the target ranking that restricts which local lexica are

consistent for further contrast pairs.

Checking for consistency of local lexica produces a set of winner-loser pairs for each

local lexicon.  These winner-loser pairs represent ranking restrictions imposed by the

input-output mapping defined by that local lexicon.  For a given contrast pair one of the

local lexica is correct and hence any ranking information that is shared across consistent

local lexica is shared with the correct local lexicon.  Enabling the learner to extract this

shared ranking information will allow the learner to learn ranking information about the

target language.  This ranking information is gained from the consistent local lexica even

though the learner does not necessarily have enough information to determine which of

the consistent local lexica is the correct one.  In this way the learner can extract ranking

information from possible input-output mappings.
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Ranking information imposed by a local lexicon is generated through error-driven

learning using MRCD.  This ranking information is captured by the winner-loser pairs

that the error-driven learning generates and these winner-loser pairs themselves represent

the ranking information as ERCs.

Each consistent local lexicon can potentially generate a non-empty set of ERCs.  From

these sets the learner may be able to extract ranking information.  Each set of ERCs, one

for each consistent local lexicon, imposes its own ranking restrictions and these ranking

restrictions may be in conflict with other restrictions placed by other consistent local

lexica.  Even though ranking information across local lexica may be contradictory is it

possible to determine precisely what ranking conditions satisfy all of the local lexica’s

ranking restrictions.

Section 4.1.  Fusion

A tool that will be used throughout this section is that of fusion (Prince 2002).  Fusion is

a binary operator on the set of ERCs for a given constraint set mapping into that set of

ERCs that has many properties that are supremely useful for reasoning about rankings.

Two such properties are that the fusion of two ERCs is entailed by each of the fusands

and that two ERCs that have contradictory ranking requirements will fuse to an ERC

consisting only of Ls and es signifying the infelicitousness of the conjunction of the two

ERCs.
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The fusion operator is defined component-wise over the set {W, e, L}.  Define the

component-wise fusion of any two elements of the set {W, e, L} as follows where the

operator ‘o’ signifies the component-wise fusion.

1. Definition of fusion over set {W, e, L}

• W o e = e o W = W
• W o L = L o W = L
• e o L = L o e = L
• X o X = X (where ‘X’ means any of {W, e, L})

So fusion over the set {W, e, L} is commutative, idempotent, and associative.  This

definition stems from placing a three-valued logic on the set {W, e, L} where L entails e

and e entails W and then for two elements in {W, e, L} the fusion of the two elements is

the strongest entailment-wise element of the two.  So, one can view L as dominant since

it entails all other elements and hence L fuse anything will always be L.

This above fusion is defined only on the set {W, e, L} while what is desired is fusion on

two ERCs.  Fusion of two ERCs then is defined as the component-wise fusion of the

ERCs.  So in the following example in the table below with the ERCs <W, L, W, W> and

<W, e, L, e>, their fusion is <W, L, L, e> since the component-wise fusion of W and W

is W (for C1), L o e = L (for C2), W o L = L (for C3), and W o e (for C4).
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2. Fusion of two ERCs

C1 C2 C3 C4

ERC 1 W L W W
ERC 2 W e L e
1 o 2 W L L W

Beyond having the properties that the fusion of any two ERCs is entailed by both ERCs

and that inconsistent ERCs fuse to L+, fusion allows for the construction of a set of

ERCs’ fusional closure.    The fusional closure of an ERC set will be described and

discussed in detail later in this chapter but its most useful characteristic (for present

purposes) is that any ERC entailed by the original set is entailed by a single ERC in the

set’s fusional closure.

Section 4.2. Overview of ranking extraction algorithm

An overview of the algorithm to extract shared ranking information is given here.  The

algorithm consists of two parts, first, a processing stage on the ERCs generated from

testing for consistency of the local lexica and then, second, extraction of shared ranking

information across the processed sets of ERCs.  The first stage, the processing of ERC

sets, to be described in detail in a section below, is necessary to ensure that the extraction

of shared information in the second stage is maximally informative.  The second stage of

extraction of shared ranking information has the property that if there is ranking

information to be extracted from a completely arbitrary set of ERC sets it will extract

some shared ranking information but not necessarily all of the shared ranking

information.  The first stage modifies the ERC sets in such a way as to guarantee that the
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second stage extracts all shared ranking information.  Without this modification, under

certain circumstances, the second stage of the algorithm will only extract some ranking

information if there is any to be extracted.

The first stage of the algorithm adds to each ERC set its fusional closure.  The fusional

closure of an ERC set has the property that it entails the same set of ERCs as the original

set and for each ERC entailed by the original set there is at least one ERC in the fusional

closure of that set that entails this ERC.  These properties of the fusional closure are

investigated in more depth in later sections.

The second stage of the algorithm works over the set of fusional closures of the original

ERC sets.  The algorithm constructs a set of ERCs by attending to each constraint in

sequence.  For each constraint the algorithm determines whether there is an ERC in each

fusional closure set that has an L in that constraint.  If so, then each ERC set requires that

this constraint be dominated by some set of constraints.  Having an L in a constraint

means that the ERC (and consequently its ERC set) necessarily requires that that

constraint be dominated by some set of constraints.  Each ERC set having an ERC with

an L in a constraint means that all of the ERC sets require that constraint to be dominated

by some set of constraints (possibly different for each ERC set).  The algorithm is

designed to extract precisely those constraints that must dominate this given constraint.

So, for the given constraint that has an ERC with an L for that constraint in each fusional

closure the algorithm selects one of these ERCs with an L from each fusional closure set
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(there may be more than one) and determines what these ERCs jointly entail.  This is

repeated for each combination of ERCs that assign an L to the given constraint.  In this

way the algorithm determines precisely which constraints must dominate the given

constraint.  This procedure is then repeated for each of the constraints in the constraint

set.  An overview of the algorithm is given below.

3. Shared ranking extraction algorithm

For a set of ERC sets
Stage 1: Construct the fusional closure of each of the ERC sets
Stage 2: For each constraint

• Determine if there is at least one ERC with an L for that
constraint in each fusional closure set

• If so, determine the shared ranking information of the
collection of ERCs with an L in that constraint

Stage 2, the stage that extracts the shared ranking information from the fusional closure

sets is discussed in detail in the following sections.  Stage 1, the stage the processes the

ERC sets ensuring that stage 2 extracts all relevant ranking information is discussed after

the discussion of stage 2.

Section 4.3.  Ranking information to be extracted across consistent local lexica

For a given contrast pair often multiple local lexica are consistent and these consistent

local lexica for the contrast pair entail sets of required ranking restrictions.  These

ranking restrictions may be contradictory; that is, one consistent local lexicon for a

contrast pair may require that constraint A outrank constraint B while another consistent
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local lexicon may require that constraint B outrank constraint A.  Even when two local

lexica impose conflicting ranking requirements it is possible that there are certain

requirements that are shared by both and these shared requirements may be extracted

from the contradictory ranking restrictions.  Though, of course, conflicting ranking

information is by no means required for information to be extracted from two local

lexica.

In the following example two sets of ERCs are given that have contradictory ranking

requirements and yet contain shared ranking information.

4. ERC Set 1

C1 C2 C3

ERC1 W L e
ERC2 e W L

5. ERC Set 2

C1 C2 C3

ERC3 W e L
ERC4 e L W

ERC Set 1 contains two ERCs, the first of which requires that C1 >> C2 and the second

requires that C2 >> C3.  These two requirements impose the total order on the three

constraints of C1 >> C2 >> C3.  ERC Set 2 also contains two ERCS, the first requiring

C1 >> C3 and the second that C3 >> C2.  These two ERCs impose the total order C1 >>

C3 >> C2.
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These two ERC sets impose conflicting ranking requirements.  Specifically the first

requires that C2 >> C3 while the second requires that C3 >> C2.  These conflicting

requirements, while a product of the total orders imposed by both set of ERCs, are

directly represented in the ERCs generated from their respective local lexica.  In the

tableaux below this conflict is shown.  ERC 2 from ERC Set 1 fused with ERC 4 from

ERC Set 2 is given in the tableaux and clearly shows that these requirements are

contradictory.

6. Contradictory ranking requirements

C1 C2 C3

ERC2 e W L
ERC4 e L W
2 o 4 e L L

While the two local lexica impose conflicting ranking requirements they share certain

ranking requirements.  Both ERC sets require that C1 dominate both C2 and C3; they

only disagree on the relative rankings of C2 and C3.  Using the approach described below

the learner can extract the shared ranking requirement that C1 dominate both C2 and C3.

Section 4.4.  The component-wise join

Ranking information is represented by ERCs and the methods of determining shared

ranking information across ERC sets described herein apply to ERCs and ERC sets.  But

before defining an operator and an algorithm to extract shared ranking information from

ERCs an operator is defined on the components of ERCs.  This section defines a binary
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operator over the set {W, e, L}, the constituent components of ERCs.  This operator is

necessary to determine an operator over ERCs, the join of two ERCs, and ultimately to

extract shared ranking information from a set of ERCs.

Define the binary operation ⊕ from {W, e, L} x {W, e, L} → {W, e, L} by the following

operations.

7. W ⊕ X = X ⊕ W = W (where X is any member of {W, e, L})

8. X ⊕ X = X

9. L ⊕ e = e ⊕ L = e

So, W is ‘dominant’, i.e. W join anything is W, the operator is idempotent and L is

identity.  This operator is both commutative and associative; these facts follow directly

from the definition.

If one places the order on the elements of the set {L, e, W}, L < e < W, then this operator

can be seen as producing the maximal element of any two elements from the set {L, e,

W}.  That is, the join of two elements of {L, e, W} is the greatest value of the two

elements according to the order L < e < W.  So W join anything is W since W is the

maximal element of the order, while L join any element is that other element since L is

the least element of the order.  The ordering L < e < W places a (quite trivial) lattice

structure on the set {L, e, W} and consequently one can define the join of a set of

elements of the lattice.  The join, j, of a set S of elements of a lattice is that element that
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has the property that first, every element, s of S is less than or equal to j, and second, that

for any element x such that s ≤ x for all s ∈ S, it is the case that j ≤ x.  Now, the order

given above over the set {L, e, W} defines an admittedly simple lattice structure; it is the

case that the join operator, ⊕, gives precisely the lattice-theoretic join of any two

elements.  It gives exactly the largest element of two elements and no larger according to

the order given above.  The fact that this is the join of this simple lattice will find an exact

parallel when the lattice of ERC entailment is constructed below.

Section 4.5.  The join of ERCs

In the section above a binary operator was defined over the set of {W, e, L}.  This

operator is needed to define a binary operator over ERCs that will lead to a method of

determining the shared ranking information over a set of set of ERCs.

Define a binary operator on the set of ERCs as follows: for two ERCs x and y define the

join, x ⊕ y, of the two ERCs as that ERC that has its kth column as the component-wise

join of the kth column of x and the kth column of y.7  This is the composite order.  For an

ERC x, let x[k] represent the value from the set {W, e, L} that x has in column k.  Then

the join of two ERCs, x and y, defined as x ⊕ y, is that ERC where (x ⊕ y)[k] = x[k] ⊕

y[k].  With this definition the operator ⊕ has been overloaded, meaning that the join

operator, ⊕, has a component-wise meaning as a binary operator on the set {W, e, L} and

                                                  
7 This operator is equivalent to the Lukasiewicz-Kleene-RM3 3-valued ‘or’, as mentioned
in Prince 2002, p51, example 99.
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an ERC-wise meaning on the set of ERCs.  An example of the join ERC operator is given

below.

10. Join of two ERCs

In the table above the join of two ERCs is given.  Row 3 shows the join of the ERCs from

row 1 and 2; the join of ERC1 and ERC2, ERC1 ⊕ ERC2 is represented in the table with

the notation 1 ⊕ 2.  In computing the value of (ERC1 ⊕ ERC2)[C1], note that ERC1[C1]

is W and ERC2[C1] = e.  Hence (ERC1 ⊕ ERC2)[C1] = ERC1[C1] ⊕ ERC2[C2] = W ⊕

e = W.  For C3, (ERC1 ⊕ ERC2)[C3] = ERC1[C3] ⊕ ERC2[C3] = e ⊕ L = e.  The

constraints C2 and C4 following similarly, fully defining the ERC1 ⊕ ERC2.  While the

symbol ⊕ is overloaded and means two things (component-wise join and ERC-wise join)

in these equations it is not being used ambiguously.  Each instance of the symbol has at

most one interpretation depending on the context.

The ERC join has some of the same properties as the component-wise join which follow

directly from its definition using the component-wise join.  The ERC join is commutative

and associative.  These facts follow directly from the definition.  Most importantly, for

the lattice over the set of ERCs imposed by the component-wise lattice of the join is the

entailment lattice-theoretic join.  This is proven below.

C1 C2 C3 C4

1 ERC1 W L e L
2 ERC2 e W L L
3 1 ⊕ 2 W W e L



89

ERC entailment places a partial order on the set of ERCs.  Given two ERCs x and y this

order is given by defining x < y if and only if x entails y.  This partial order defines a

lattice over the set of ERCs and given any two ERCs x and y, x ⊕ y is the lattice-

theoretic join of x and y over the lattice defined by ERC entailment.

Claim: for two ERCs x and y, x ⊕ y is the join of x and y over the lattice defined by

ERC entailment.

Proof: Let j be the join of x and y.  Then j has the property that x → j and y → j and if

there is an ERC w such that x → w and y → w, then j → w.  First I want to show that x

→ x ⊕ y and that y → x ⊕ y.  Consider a column k of x, x[k], that contains an L.  Then

(x ⊕ y)[k] contains either an L, e, or W depending on y[k].  If x[k] contains an e, then (x

⊕ y)[k] contains either an e or W by the operations of ⊕.  And finally, if x[k] contains a

W, then (x ⊕ y)[k] contains only a W by the operations of ⊕.  But these values of (x ⊕

y)[k] are precisely those allowed under the operations of L-retraction and W-extension.

Because the resulting ERC derived from L-retraction and W-extension is always implied

by the original ERC this shows that x → x ⊕ y.  By symmetry, y → x ⊕ y.

Now suppose that w is such that x → w and y → w.  Showing that x ⊕ y → w will prove

that x ⊕ y = j.  Now, every ERC entailed by x is a result of some (or no) applications of

L-retraction and W-extension operations.  So, consider w[k].  Suppose w[k] = L.  Then

x[k] = L and y[k] = L since w[k] must be a product of L-retraction, W-extensions, or
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inaction.  Hence, (x ⊕ y)[k] = L.  Suppose w[k] = e.  Then x[k] = L or e and y[k] = L or e

and hence (x ⊕ y)[k] = L or e.  Finally, suppose w[k] = W.  By definition of what an ERC

is, (x ⊕ y)[k] = L, e, or W.  But this means that for each w[k] it is an L-retractions and/or

W-extension of (x ⊕ y)[k] (or is identical to it).  And so x ⊕ y → w.  Therefore x ⊕ y is

the join of x and y over the lattice defined by ERC entailment.  Q.E.D.

Initially we defined the join operator, ⊕, over the set {W, e, L}.  This last section has

defined the join operator, ⊕, over pairs of ERCs.  The symbol, ⊕, here is overloaded; it

means either joining over {W, e, L} or joining of two ERCs.  The joining of two ERCs is

not sufficient for our purposes though.  We will need an operation to extract ranking

information over sets of ERCs that contain more than one element.

Section 4.5.1  Joining can lose information over more than two ERCs

The join operator for two ERCs is a useful computational tool but it can fall short by

itself as a tool the learner uses for extracting useful ranking information.  This is because

the join operator as defined above produces the join for two ERCs while local lexica

often impose ranking restrictions that are necessarily captured not by one ERC but by a

set of ERCs.  Joining all of the ERCs from a set of ERC sets will produce the join of each

of the individual ERCs and may lose shared ranking information, since ranking

information entailed by the set of ERCs created from error-driven learning for a given

local lexicon will often be captured by conjunctions of ERCs in that sets.  Taking the join

of a set of ERCs defined by a local lexicon will lose these relationships and only produce
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the one ERC that is the join of all the ERCs in the set.  If these independent ranking

restrictions are shared with ranking restrictions imposed by other local lexica then the

ERC join may lose some of this shared ranking information.  This is demonstrated in the

two local lexica presented at the beginning of this chapter which are repeated below.

11. ERC Set 1

12. ERC Set 2

ERC Set 1 imposes the total order C1 >> C2 >> C3 while ERC Set 2 imposes the order

C1 >> C3 >> C2 and both share the ranking requirement that C1 dominate both C2 and

C3.  Yet the result of taking the join of all four ERCs is uninformative.  It yields an ERC

with Ws in each column, a trivially true ERC.  This computation is shown in the

following tableaux.

13. The join of all four ERCs

C1 C2 C3

ERC1 W L e
ERC2 e W L
ERC3 W e L
ERC4 e L W
1 ⊕ 2 ⊕ 3 ⊕ 4 W W W

C1 C2 C3

ERC1 W L e
ERC2 e W L

C1 C2 C3

ERC3 W e L
ERC4 e L W
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No ranking information is gained by joining all of the ERCs from the two local lexica.

ERC2 requires only that C2 dominate C3 while ERC4 requires that C3 dominate C2.

When two ERCs have precisely opposite ranking requirements the join will contain no

informative ranking information.  In general, when these types of opposite ranking

requirements do not hold, some information may be gained but it is not guaranteed.  In

fact in many instances all information about shared ranking requirements will be lost.

Section 4.5.2  Extracting joint ranking information

The algorithm presented here produces a set of ERCs from sets of ERCs.  This set is

entailed by each of the sets of ERCs.  Because each of the sets of ERCs entails the set of

ERCs produced by this algorithm this set captures shared ranking information across the

ERC sets.  The set constructed will always produce some shared ranking information

when there is shared ranking information to be obtained.  If the ERC sets that the

algorithm is applied to have the property that any ERC entailed by the set is entailed by at

least one individual member of the set then the algorithm is guaranteed to produce all

shared ranking information.  This property of individual ERC entailment does not hold

for many ERC sets, though crucially it holds for the fusional closure of an ERC set.

For a set of ERC sets the algorithm determines for each constraint whether the sets jointly

require that that constraint must be dominated.  If so, the algorithm determines which

constraints must dominate the given constraint.  It does this by taking an ERC with an L
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in the given constraint from each of the ERC sets and joining these ERCs.  Then, this

process is repeated for all combinations of ERCs with an L in the given constraint where

one ERC is chosen from each of the ERC sets.  In this way independence of the ERCs in

a given ERC set are disentangled.  This process is repeated for each constraint.  The

resulting set captures all of the shared ranking requirements of the given ERC sets (if the

given ERC sets have the fusional closure property described above).  A high-level

description of the algorithm is given below before the particulars are described.

14. Shared ranking extraction algorithm (stage 2)

• For a set of ERC sets
• For each constraint having an ERC in each of the sets with an L for that

given constraint
• For every combination of one ERC from each ERC set where the

ERC has an L in the given constraint
• Join these ERCs using the join operator, ⊕

The next section will precisely describe the steps outlined above.

Section 4.6.  Shared ranking extraction algorithm

Turning now to the specifics of the algorithm, let {Ei} be a set of ERC sets.  This is the

set of ERC sets that the algorithm will extract shared ranking information from.  Suppose

there are n constraints.  For each constraint Ck, where 1 ≤ k ≤ n, the algorithm determines

whether there is at least one ERC in each of the ERC sets {Ei} that contains an L in

constraint Ck.  If, for a given constraint Ck, there is at least one ERC in each ERC set that

has an L in constraint Ck the algorithm selects exactly one ERC with an L in constraint Ck
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from each ERC set.  The algorithm then joins these selected ERCs using the join

operator, ⊕.  The resultant ERC is ranking information jointly entailed by all of the ERC

sets.  There may be more than one ERC in any given ERC set that contains an L in

constraint Ck and so the algorithm continues by selecting one ERC with an L in constraint

Ck from each ERC set and joining them together, doing this until all combinations of

possible ERCs have been selected and joined.  Those joined together must each have an L

in constraint Ck and there must be exactly one from each ERC set.  This is necessary to

avoid joining two ERCs from the same ERC set with the resultant potential loss of

information.  This joining procedure is then repeated for each constraint producing a set

of ERCs that captures the shared ranking information of the original ERC sets as will be

proven later in this chapter.
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Section 4.6.1 Algorithm applied

In this section the ranking extraction algorithm is applied to a set of ERC sets.  Given

below are two sets of ERCs.

15. ERC Set 1

C1 C2 C3

ERC1 W L L
ERC2 e W L

16. ERC Set 2

C1 C2 C3

ERC3 W e L

As can be deduced the shared ranking information across these two ERC sets is

represented by the ERC <W, e, L>.  ERC Set 2 contains only this ERC and therefore

obviously entails <W, e, L> while ERC Set 1 contains <W, L, L> and therefore also

clearly entails <W, e, L>.

The algorithm proceeds by first attending to constraint C1.  In neither ERC Set is there an

ERC with an L in C1 and hence the algorithm produces no ERCs while attending to C1.

The algorithm then moves on to C2.  ERC Set 1 has one ERC with an L in C2 but ERC

Set 2 does not have an ERC with an L in C2.  The algorithm requires that each ERC Set

has an ERC with an L in the relevant constraint and here ERC Set 2 does not.  So the



96

algorithm produces no ERCs from attending to constraint C2 and so moves on to

constraint C3.

Both ERC Set 1 and ERC Set 2 have at least one ERC with an L in constraint C3 and so

the algorithm selects one ERC from each of the ERC Set.  Selecting ERC 1 and ERC 3

the algorithm joins these two ERCs together.

17. ERC Set 1 Result of joining ERC 1 and ERC3 together

C1 C2 C3

ERC1 W L L
ERC3 W e L
1 ⊕ 3 W e L

Now each ERC with an L in C3 must be joined with every other ERC with an L in C3

that is not in the same ERC Set.  So ERC 2 from ERC Set 1 has an L in C3 and hence

must be joined with ERC 3 from ERC Set 2.

18. Result of joining ERC 2 and ERC3 together

C1 C2 C3

ERC2 e W L
ERC3 W e L
2 ⊕ 3 W W L

The joining of ERC 1 with ERC 2 which are both from ERC Set 1 is not necessary

because they are from the same local lexicon.  It is sufficient to join these ERCs
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individually with the ERCs from the other ERC set to extract the shared ranking

information.

The two ERCs produced, <W, e, L> and <W, W, L> clearly entail the shared ranking

information from the two ERC sets which is represented by the ERC <W, e, L>.  Here

the ERC <W, W, L> is redundant since <W, e, L> entails <W, W, L>.  Though the

algorithm produced redundant information it also produced information that captured all

of the shared ranking information from the two ERC sets.

Section 4.6.2 Algorithm focuses on constraints

The above algorithm is structured around constraints, and information across ERC sets is

extracted on a constraint-by-constraint basis.  The algorithm focuses on constraints and

particularly on Ls in constraints because of the necessity of domination implied by an L

in a constraint.  If an ERC contains an L in a constraint then that constraint must be

dominated by some set of constraints.  If each set of ERCs from a collection of sets of

ERCs each contain an ERC that has an L in a given constraint then the collection of

ERCs (even if containing conflicting information) require that that constraint be

dominated by some set of constraints.  Because an L in a constraint entails necessary

domination the algorithm attends to Ls in constraints.

Since the join of two ERCs is entailed by each ERC (as was shown in section 4.4.1.), the

join of the ERCs, one ERC from each ERC set, will be jointly entailed by the ERC sets.
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Furthermore, this join is informative.  That is, first, the join of the collection of ERCs

across ERC sets for a given constraint, say Ck, in the algorithm above has an L in at least

one constraint precisely because it is the join of a set of ERCs that each have an L in the

same constraint, namely Ck.  The join of two Ls is always an L and hence by joining only

those ERCs in the ERC sets that have an L in constraint Ck the result would have an L in

constraint Ck and some number of Ws in the other constraints (here it is necessary that

each ERC set contain an ERC with an L in constraint Ck, otherwise the resulting join

would not be entailed by all of the ERC sets, only those that contained the L in constraint

Ck).  This resultant ERC would capture the fact that constraint Ck must be dominated.

While this ERC is entailed by each of the ERC sets and it contains non-trivial

information it is still possible that it is not maximally informative.  An example of this

situation is given below using the two ERC sets from the previous example.

19. ERC Set 1

C1 C2 C3

ERC1 W L L
ERC2 e W L

20. ERC Set 2

C1 C2 C3

ERC3 W e L

The first ERC set here requires via ERC1 that constraint C1 dominates C2 and C3 and via

ERC2 that constraint C2 dominate C3.  These two ranking requirements are logically
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independent and no single ERC can capture their ranking requirements.  The second local

ERC set only requires that constraint C1 dominate C3.

Now, attending to the first constraint, constraint C1, it is the case that no ERCs from

either ERC set contain an L in the column C1.  Moving on to constraint C2, only ERC

Set 1 contains an ERC with an L in constraint C2, specifically ERC1.  Because ERC Set

2 does not have an ERC with an L in constraint C2 it does not require that C2 be

dominated by any constraint.  Hence the L in ERC1 in constraint C2 is uninformative.

Finally, focusing on constraint C3 both ERC sets contain an ERC with an L in constraint

C3.  In fact, ERC Set 1 contains two ERCs with an L in column C3.  These three ERCs

that have L in constraint C3 can be joined together to yield shared ranking information

across the two ERC sets.  This is done in the tableau below.

21. Joining ERCs containing an L in constraint C3

C1 C2 C3

ERC 1 W L L
ERC 2 e W L
ERC 3 e W L
1 ⊕ 2 ⊕ 3 W W L

Joining the three ERCs yields the information that constraint C3 must be dominated by

either C1 or C2.  While true for these two ERC sets a stronger statement is also true.

Both ERC sets require not just that C1 or C2 dominate C3 but that C1 dominate C3.  This

information is lost by joining all three ERCs together that contain an L in constraint C3.
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The information is lost because there are two ERCs in ERC Set 1 that contain an L in

constraint C3 ERC1 <W, L, L> and ERC2 <e, W, L>.  The join of these two ERCs

together produces <W, W, L> and this joined with ERC3 <e, W, L> produces <W, W,

L>.  The algorithm avoids this information loss by only selecting one ERC that contains

an L in the given constraint from each of the ERC sets.  In this way the joining of two

ERCs from one ERC set does not happen.  With these two ERC sets there are two ERCs

that contain an L in constraint C3 in ERC Set 1, ERC1 and ERC2.  The algorithm joins

ERC1 with ERC3 and then joins ERC2 with ERC3 thereby avoiding the information loss.

The result of these joinings is given below.

22. Algorithm applied to ERC Sets 1 and 2

C1 C2 C3

1 ⊕ 3 W e L
2 ⊕ 3 W W L

The algorithm produces two ERCs, 1 ⊕ 3 and 2 ⊕ 3, and these two ERCs capture the

shared ranking information of the two local lexica.  In this case the ERC 1 ⊕ 3 entails the

ERC 2 ⊕ 3 and hence the ERC 2 ⊕ 3 adds no information beyond that of 1 ⊕ 3.  So the

algorithm is not guaranteed to produce maximally concise representations of the shared

ranking information, only a set of ERCs that captures the shared ranking information

(given the correct structure of the original ERC sets).
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Section 4.6.3 Proof of ranking information extraction

The ranking extraction algorithm defined above does indeed extract shared ranking

information.  The following proves this.

Theorem.  For a set of ERC sets {Ai}, the set of ERCs J(Ai) produced from the above

algorithm is entailed by each set of ERCs Ai.

Proof:  Let {Ai} where i is indexed over a finite set I be a set of ERC sets and let J(Ai) be

the result of the above algorithm on {Ai}.  Let j ∈ J(Ai).  I want to show that each ERC

set Ai entails j.  Now j ∈ J(Ai) and so it is the result of joining together some set of ERCs

from the sets Ai.  To be precise, there must be some constraint C such that each Ai

contains an ERC with an L in C and j is the result of joining all of these ERCs together.

So, for each Ai there is some ERC ai such that ai → j since j is the result of joining

exactly these ERCs together and the individual ERCs of the join entail the join.  But this

means that Ai → j for each Ai.  Q.E.D.

The above shows that the result of the algorithm is entailed by each of the constituent

ERC sets and hence captures some shared ranking information.  Though the algorithm

captures some ranking information it is not guaranteed to capture all of the shared

ranking information.  Only when the ERC sets have the property of individual entailment

does the algorithm produce all of the shared ranking information.  The next section

demonstrates the failure to extract all ranking information and the following section gives
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a procedure on the ERC sets to guarantee maximal extraction of shared ranking

information.

Section 4.6.5 Failure to extract relevant ranking information

Under certain circumstances the algorithm can fail to extract all of the shared ranking

information from a set of ERC sets.  Although in these situations some ranking

information is extracted (when there is shared ranking information to be extracted the

algorithm is guaranteed to extract some information) the algorithm fails to extract all of

the shared ranking information.  Effectively, transitive ranking information captured by

ERCs internal to a given ERC set is missed by the algorithm.  If this information were in

the ERC sets then no information would be lost.  Two examples of this information loss

are given below.

Section 4.6.5.1 Information loss example 1

Two ERC sets are presented below.

23. ERC Set 1

C1 C2 C3

ERC 1 W L W
ERC 2 W e L

24. ERC Set 2

C1 C2 C3

ERC 3 W L e
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The algorithm applied to these ERC sets produces only one ERC.  Attending to constraint

C1 no ERC is produced since neither ERC set has an ERC with an L in C1.  Similarly, no

ERC is constructed while attending to C3 since only ERC Set 1 has an ERC with an L in

C3 and ERC Set 2 does not.  Attending to constraint C2, each ERC set has an ERC with

an L in constraint C2.  The algorithm joins these two ERCs.  The result is given in the

tableau below.

25. The join of ERC 1 and 3

C1 C2 C3

ERC 1 W L W
ERC 3 W L e
1 ⊕ 3 W L W

The result of the entire algorithm on these two ERC Sets then is the single ERC, 1 ⊕ 3,

<W, L, W>.

A problem arises because both ERC sets entail the ERC <W, L, e>.  First, note that ERC

Set 2 clearly entails <W, L, e> since this is the sole ERC constituting ERC Set 2.  Also,

ERC Set 1 entails <W, L, e>.  This is not as obvious.  The fusion of two ERCs is entailed

by the conjunction of the two and hence the fusion of ERC 1 and ERC 2 is entailed by

ERC Set 1.  The fusion of ERC 1and ERC2 is <W, L, L> and shown below.
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26. The fusion of ERC 1 and 2

C1 C2 C3

ERC 1 W L W
ERC 2 W e L
1 o 2 W L L

Since the ERC <W, L, L> is entailed by ERC Set 1 it is clear that <W, L, e> is also

entailed by ERC Set 1.  Hence both ERC Set 1 and 2 entail <W, L, e>.  But this ERC is

not entailed by the result of the algorithm, the ERC <W, L, W>.  Hence the algorithm has

failed to determine shared ranking information of these two ERC sets.

This failure of information extraction occurred because transitive ranking information

was not present in ERC Set 1.  ERC 1 requires that either C1 or C3 dominate C2.   ERC 2

requires that C1 dominate C3.  If C1 dominates C3 and it is the case that C1 or C3

dominate C2 then necessarily C1 dominates C2.  This information is not entailed by any

single ERC in the ERC set.  The potential to extract the transitive ranking information is

lost because ERC 1 does not have an L in constraint C3 and hence is not joined with any

ERC from ERC Set 2.  Hence the information that is only captured by ERC 1 and ERC 2

is lost because no representative ERC for ERC 1 is constructed in the resultant join set.

Section 4.6.5.2 Information loss example 2

The example presented here demonstrates the same type of information loss but from a

more informative set of ERCs.  The maximally informative basis (MIB) for a set of ERCs
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is the set of ERCs that entails all ERCs that that set entails; it is the “most concise

(smallest) and most informative (containing the strongest elements, entailmentwise)”

basis set of ERC for a given set as described by Brasoveanu and Prince 2005.  The

algorithm applied to sets of MIBs, even though they are maximally informative, can still

fail to extract entailed ranking relations, and it fails for the same reason above – transitive

ranking relations were lost for lack of an ERC to join to.

The following two ERC sets are MIBs.

27. ERC Set 1

C1 C2 C3 C4 C5

ERC 1 W e L e L
ERC 2 e W e L W

28. ERC Set 2

C1 C2 C3 C4 C5

ERC 3 W W e L e

Applying the algorithm to these two ERC sets produces only one ERC, the ERC

produced from joining ERC 2 and ERC 3.  This resultant ERC is given below.

29. Result of algorithm on ERC Set 1 and 2

C1 C2 C3 C4 C5

2 ⊕ 3 W W e L W
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While capturing shared ranking information the algorithm has failed to capture the fact

that both ERC set 1 and 2 entail the ERC <W, W, e, L, e>.  The second ERC set contains

exactly this ERC and therefore clearly entails it.  The first ERC set also entails this ERC.

Fusing the two ERCs in ERC set 1 produces the ERC <W, W, L, L, L> which clearly

entails the ERC <W, W, e, L, e>.  Information is lost in this example for the same reasons

as in the previous example; ranking information that is implied via transitive ranking

relations across ERCs in a single ERC set are lost when one of the ERCs is not joined

with any ERCs from the other ERC sets.  In the next section a means of overcoming this

limitation is given by modifying the ERC sets so the algorithm always extracts all shared

ranking information.

Section 4.7 Stage one of the algorithm, processing of ERC sets

The previous discussion was entirely focused on stage 2 of the algorithm.  Stage 2

extracts shared ranking information from a collection of ERC sets.  This extraction can

fail to collect all shared information unless the ERC sets are of the form singular

entailment, meaning that for any ERC entailed by the ERC set there is a single ERC in

the ERC set that entails this ERC.  Stage 1 of the algorithm produces a collection of ERC

sets that have precisely this property.  Therefore, by executing stage 1 the algorithm

ensures that stage 2 captures all ranking information by processing the ERC sets before

the extraction of shared ranking information begins.  By processing the ERC sets in the

way described below the second stage of the algorithm is guaranteed to be maximally

informative.  All shared ranking information will be determined from the ERC sets.
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 Given a set of ERCs the initial stage of the algorithm produces the fusional closure of the

given ERC set.  The fusional closure of the ERC set is the set of ERCs that results from

fusing all combinations of ERCs together from the original set and then fusing all

combinations of ERCs from the original set and the resulting set and continuing this

process until no further new ERCs are obtained.  This approach is exactly based on the

mathematical meaning of the word “closure”.  A set is said to be closed under a binary

operation if given any two elements of the set the result of the operation applied to the

two elements is still in the set.  In this case the operation is fusion and the above

construction is the “fusional closure” in the mathematical sense of the original set.  It is

the smallest set that contains the original set and is closed under the operation of fusion.

Any two elements fused together results in an element in the set.

Because the fusion of two ERCs is always entailed by the conjunction of those two ERCs

the fusional closure of a set is logically equivalent to the set itself (Prince 2002).

Furthermore, this process is guaranteed to terminate since the set of ERCs entailed by a

set of ERCs is finite and the process ends when no further new ERCs are created.  The

fusional closure has one more property that makes it supremely useful for the second

stage of the ranking extraction algorithm; for any ERC entailed by the original set there is

an ERC in the fusional closure that entails it (Prince 2002, p14, Proposition 2.5).
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Section 4.7.1 Example of calculating the fusional closure

Here is presented an example of the fusional closure procedure applied to one ERC set.

The set is given below and contains two ERCs, one of which requires that C1 or C2

dominate C3 and the second which requires that C1 dominate C2.

30. ERC Set 1

C1 C2 C3

ERC 2 W W L
ERC 1 W L e

The fusional closure procedure starts by taking the fusion of all ERCs pair-wise in the

ERC set.  In this case there are only two ERCs and hence only one ERC is created from

fusing all the ERCs together pair-wise.  That ERC is <W, L, L>.  Now the algorithm

takes this ERC and fuses it pair-wise with all of the ERCs in the original set.  In this case

the result each time is <W, L, L> and so no new ERCs are created.  The algorithm

terminates having produced the fusional closure set which consists of the three ERCs

below.

31. Fusional closure of ERC Set 1

C1 C2 C3

ERC 2 W W L
ERC 1 W L e
1 o 2 W L L
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This set has the desired property that for any ERC implied by the original set there is one

ERC that implies it in the fusional closure.  In this fusional closure set given any ERC

that is entailed by the original set it is entailed by the ERC <W, L, L> since this ERC

entails each of the ERCs in the original set.  The other two ERCs in the fusional closure

do not provide any information that is not already given by <W, L, L>.  In most cases the

fusional closure set will contain redundant information.  But in many cases this process

will not terminate after precisely one round of ERC creation as seen in the example

below.

In this example there are three ERCs and four constraints.  ERC 1 requires that constraint

C1 dominate C2; ERC 2 requires that C1 dominate C3; ERC 3 requires that C1 dominate

C4.

32. ERC Set 2

C1 C2 C3 C4

ERC 1 W L e e
ERC 2 W e L e
ERC 3 W e e L

The algorithm fuses each of these ERCs with each other pair-wise to produce the

following three ERCs.
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33. Pair-wise fusing of ERCs in ERC Set 2

C1 C2 C3 C4

1 o 2 W L L e
1 o 3 W L e L
2 o 3 W e L L

These ERCs are then fused with each other and with the original ERCs from the set.  This

last procedure only produces one new ERC, <W, L, L, L>.  Any further fusion of any

ERCs from these two steps will not produce any new ERCs.  The end result of this

procedure then is the seven ERCs above, the three from the original set, the three created

from fusing these together, and the final ERC created from the previous six.

Section 4.7.2 Fusional closure allows stage 2 to extract all shared ranking

information

The procedure defined at the beginning of this chapter for extracting shared ranking

information from ERC sets consists of two stages, turning the ERC sets into their fusional

closures and then extracting shared ranking information from the fusional closures.  This

two-stage process is guaranteed to extract all shared ranking information from the

original ERC sets.  This is proven below.  First, because the fusion of any two ERCs is

entailed by the conjunction of both ERCs the fusional closure of an ERC set is logically

equivalent to the original ERC set.  So, to show that the ranking extraction algorithm

extracts all shared ranking information from the set of ERCs it suffices to show that for a
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given set of fusional closures of ERC sets the ranking extraction stage of the algorithm

extracts all shared ranking information from a set of fusional closures.

Theorem: For a set {Ai} of fusional closures of ERC sets and any ERC x such that

each Ai entails x, then the ranking extraction algorithm produces a set X and this X

also entails x.

Proof:  Let {Ai} be a set of fusional closures and let X = J(Ai) be the resultant set of

ERCs produced by the ranking extraction algorithm.  Now let x be an ERC that each Ai

entails.  I want to show that J(Ai) entails x.  Each Ai is a fusional closure and hence for

any ERC y that a given Ai entails there is an ERC wi ∈ Ai that entails y.  So for x, the

ERC that each Ai entails, there is an ERC say, zi ∈ Ai that entails x.  If x is a non-trivial

ERC (meaning it has at least one L for one constraint) then each of the zi must also have

an L for the constraint that x has an L in (and possibly other Ls elsewhere), call this

constraint C.  Now each zi has an L in C and so the join of all of the zis is an ERC in

J(Ai).  Call this ERC j(zi).  But since all of the zis entail x, j(zi) must also entail x since it

is the lattice-theoretic join of the ERCs under the entailment partial order.  Hence any

ERC entailed by all of the Ai is also entailed by J(Ai).  Q.E.D.

This theorem along with the fact that the fusional closure of a set is logically equivalent

to the original set proves that the two-stage algorithm presented in this chapter extracts all

shared ranking information from a set of ERC sets.
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Section 4.8 Example of both stages of ranking extraction algorithm applied

As shown in a previous section, without the pre-processing of ERC sets to fusional

closure sets the ranking extraction algorithm can fail to determine all of the shared

ranking information.  Here I apply the algorithm to one of the collection of ERC sets on

which the algorithm without the pre-processing failed to extract relevant ranking

information.

The two ERC sets are given below.  The first has two ERCs and the second has one.  As

demonstrated above, the algorithm as applied to these two ERC sets and not their fusional

closures produces one ERC, <W, L, W>.  This ERC is entailed by both ERC sets but fails

to capture the fact that both ERC sets also entail the stronger ERC <W, L, e>.

34. ERC Set 1

C1 C2 C3

ERC 1 W L W
ERC 2 W e L

35.  ERC Set 2

C1 C2 C3

ERC 3 W L e

The first stage of the algorithm constructs the fusional closure of both of the ERC sets

given.  The fusional closure of the first ERC set consists of the two ERCs in the original

set plus the ERC <W, L, L>.  The fusional closure of the second ERC set is identical to
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the second ERC set.  The fusional closure adds no new ERCs since there is no transitive

ranking information to be extracted since the ERC set consists of a single ERC.  The

fusional closures of the two ERC sets are given below.

36. Fusional closure of ERC Set 1

C1 C2 C3

ERC 1 W L W
ERC 2 W e L
1 o 2 W L L

37. Fusional closure of ERC Set 2

C1 C2 C3

ERC 3 W L e

The second stage of the algorithm then attends to each of the three constraints in turn.

The first constraint produces no ERCs since the two fusional closure sets do not contain

an ERC with an L in constraint C1.  Attending to constraint C2, the first fusional closure

set contains two ERCs that have an L in constraint C2 while the second fusional closure

set contains one ERC with an L in constraint C2.  Each ERC from the first closure set is

joined individually with the ERC from the second fusional closure set.  The results of the

two joins are given in the tableau below.  The final constraint, C3, produces no ERCs

because the second fusional closure set contains no ERCs that have an L in C3.

38. Result of second stage on fusional closures

C1 C2 C3

1 ⊕ 3 W L W
(1 o 2) ⊕ 3 W L e
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In the previous application of the algorithm only one ERC was produced <W, L, W> and

the shared ranking information captured by the ERC <W, L, e> was lost.  Here the

fusional closure has introduced a new ERC, 1 o 2: <W, L, L>, which directly captures the

fact that C1 must dominate C2.  This information was only available in the original ERC

set via transitive relations across ERCs in the set and was lost when joining with the

ERCs from the other ERC sets.  The algorithm applied to fusional closures guarantees

that this ranking information (and all ranking information) is not lost.

Section 4.9 Ranking extraction algorithm with shared ranking information

As shown above the ranking extraction algorithm is guaranteed to extract all shared

ranking information across a set of ERCs.  In the following chapter the learning

algorithm extracts ranking information in the form of ERCs from phonotactic

information.  This set of ERCs functions as a global store of ranking information that

holds true for all subsequent learning stages.  If the shared ranking extraction algorithm is

applied to a set of ERCs without taking into account ranking information in the global

store that is shared across the sets then it is possible to fail to extract all shared ranking

information.  In this section I show an example of this and demonstrate a solution that

consists of a slight modification to the above algorithm.8

Consider two the following two ERC sets.

                                                  
8 This issue and its solution was proposed by Bruce Tesar (p.c.).
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39. ERC Set 1

C1 C2 C3

ERC 1 W L e

40. ERC Set 2

C1 C2 C3

ERC 2 W e L

Applying the shared ranking extraction algorithm to these two sets will yield no ERCs.

Indeed, the fusional closure of ERC Set 1 is simply ERC 1 and the fusional closure of

ERC Set 2 is ERC 2.  Applying the join algorithm yields no ERCs because there are no

constraints that have an L in them across the two fusional closure sets.

Now suppose that it was known (say through phonotactic learning) that there was an ERC

that was globally true.  That is, there were ranking restrictions that necessarily held of the

two ERC sets that weren’t represented in the two ERC sets.  Suppose in this example that

this global store of ranking information was captured by the following ERC.

41. Globally true ranking restriction

C1 C2 C3

ERC 3 e W L

Now ERC 1 and ERC 3 jointly entail the ranking requirement C1 >> C3 and similarly

ERC 2 and ERC 3 jointly entail C1 >> C3 (in fact ERC 2 entails C1 >> C3 since that is

its entire logical content).  Because the shared ranking extraction algorithm only looks at
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ranking information extractable from individual sets it misses globally entailed transitive

ranking requirements.

The solution to this problem is to compute each of the fusional closures with the global

ERC store before applying the ranking extraction step to the computed fusional closures.

In this example the fusional closure of the first ERC set with the global ranking store is

given below.

42. Fusional closure of ERC Set 1 and global store

C1 C2 C3

ERC 1 W L e
ERC 3 e W L
1 o 3 W L L

In this fusional closure the transitive ranking requirements are extracted and are

represented in the ERC 1 o 3.

In the tableau below the fusional closure of ERC Set 2 and the global store is given.

43. Fusional closure of ERC Set 2 and global store

C1 C2 C3

ERC 2 W e L
ERC 3 e W L
2 o 3 W W L
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Now if the shared ranking extraction algorithm is applied to these two fusional closure

sets the ranking requirements implied by the global store and the original individual ERC

sets is extracted.  Specifically, the ERC <W, e, L> is generated along with <e, W, L>,

reproducing the information in the global ERC store.

To possibly increase the speed and reduce the creation of redundant information the

algorithm could, after creating the fusional closure of each ERC set and the global store,

remove from the fusional closure sets the original global store ranking information.  This

would not decrease the amount of information extracted from the ranking extraction

algorithm because, first, the global store ERCs are still stored in the global store and so

while not recreated while extracting the shared ranking information they are not lost.

Second, all transitive ranking information implied by the global store and each individual

ERC set is captured during the creation of the fusional closure set.  This transitive

ranking information is then used during the ranking extraction algorithm stage and hence

guarantees that transitive ranking information will not be lost.

Section 4.10 Moving along

The next chapter shows this algorithm along with the lexical specification algorithm

applied to the linguistic system from the previous chapter.  The shared ranking

information captured from ERC sets generated from applying error-driven learning on the
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local lexica as presented here allows the learner to set features that would not have been

set using only the lexical specification algorithm presented in the second chapter.  The

extraction of shared ranking information from the consistent local lexica restricts what

local lexica are consistent for further contrast pairs.
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Chapter 5. Ranking extraction applied

This chapter incorporates the procedure for extracting shared ranking information from

consistent local lexica into the CPR algorithm outlined in Chapter 2.  Also incorporated

into the algorithm is a pre-morphological knowledge stage that derives phonotactic

information.  These two additions to the algorithm address one of the issues laid out at

the end of Chapter 2.  For the language presented there, the learning algorithm failed to

determine a certain lexical specification that the language required.  The overt forms were

consistent only with one underlying form for a certain morpheme and by focusing only

on what lexical information a contrast pair yielded the learner failed to determine this

necessary specifications.  By focusing on lexical information and ranking information

necessitated by the contrast pairs of the language this information can be determined.

The complete algorithm that accomplishes this and the application to the language are

given in this chapter.  First a discussion of phonotactic learning is given followed by the

definition of the entire algorithm.  The final sections will apply the algorithm and

demonstrate its solution to the previously discussed problem.

Section 5.1.  Phonotactic learning

In the algorithm presented in Chapter 2 the learner is assumed to know the morphological

decomposition of the overt forms.  Phonotactic learning is an attempt to learn ranking

information if this assumption is discarded.  As before the proposal given here assumes

the learner has access to the overt forms of the language and all of the constraints.  No
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knowledge of the morphological decomposition of the overt forms is known.  With these

assumptions ranking information can be learned using error-driven learning assuming the

identity map (Prince & Tesar 2004).  Presented here is an algorithm directly following

(Prince & Tesar 2004) that extracts ranking information in the form of ERCs.  This

phonotactic learning algorithm is the first stage of the complete learning algorithm.

Given a set of overt forms with no knowledge of the underlying forms or the

morphological decomposition the learner makes the assumption that underlying forms are

identical to the overt forms.  This provides an input-output mapping which the learner

can extract ranking information from.  Given these underlying specifications for the overt

forms the learner proceeds to apply error-driven learning using MRCD.  This application

of MRCD produces a set of winner-loser pairs that capture ranking information as ERCs.

These ERCs place ranking restrictions on all stages of the learning algorithm.  They are

used in all further applications of MRCD and restrict which rankings are possible and

which lexica are consistent for the target language.

Section 5.2.  Phonotactic learning applied

In this section I return to the linguistic system from Chapter 3 and apply phonotactic

learning to the language presented there.  Recall that the linguistic system has three

features, stress, length, and aspiration.  Overt forms are bi-morphemic consisting of a

mono-syllabic root and mono-syllabic suffix.  There are nine constraints in the system,

three faithfulness constraints and six markedness constraints.  The constraints are
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repeated from Chapter 3 below.  The faithfulness constraints are listed in 1 – 3 and the

markedness constraints are listed in 4 – 9.

1. Id(s) The stress value must be identical to its input correspondent
2. Id(l) The length value must be identical to its input correspondent
3. Id(a) The aspiration value must be identical to its input correspondent

4. ML Stress must fall on the leftmost syllable
5. MR Stress must fall on the rightmost syllable
6. WSP If a vowel is long it must be stressed
7. *V: Do not have a long vowel
8. NoAsp Do not have an aspirated segment
9. [+s, −l, −a] Do not have a segment that is stressed, short, and −a

As an example the learner will apply phonotactic learning to a particular language of this

linguistic system defined by the constraint hierarchy in 10.

10.  WSP, *[+s, –l, –a] >> Id(s) >> ML >> MR >> Id(l) >> NoAsp, *V: >> Id(a)

This defines the mapping of the morphemes given in 11.

11. Mappings of language

Though this language has four distinct roots and three distinct suffixes and twelve overt

forms the learner during the phonotactic stage of learning only attends to the

phonotactically distinct overt forms.  This language only has four phonotactically distinct

/stress, length, asp/ ka /−XX/ sá  /+−X/ záa /++X/
pa    /−−X/ pháka pashá pazáa
baa  /−+X/ báaka bashá bazáa
tá     /+−X/ tháka thása tháza
dáa  /++X/ dáaka dáasa dáaza
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overt forms, rhása, ráasa, rashá, and rasáa.  These are the forms that the learner will gain

phonotactic ranking information from.

The learner proceeds by positing that the underlying forms of the four overt forms are

identical to their overt representation.  So the learner has four input-output mappings to

apply error-driven learning to.  These four forms are given in 12.

12. Phonotactic mappings of the language
a. /rhása/ → rhása
b. /ráasa/ → ráasa
c. /rashá/ → rashá
d. /rasáa/ → rasáa

MRCD applied to these four input-output pairs produces a set of winner-loser pairs.  The

ranking restrictions imposed by these winner-loser pairs are given below in maximally

concise ERC-form for perspicuity sake.  These ERCs are then maintained throughout the

remainder of the algorithm and are used in any application of BCD, whether it is

checking for consistency or determining a final ranking in the final stage of the

algorithm.

13. Ranking restrictions of overt forms rhása, ráasa, rashá, and rasáa

WSP *[+s,−l,−a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
1 L L W W
2 L L W W
3 L L W W
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The ranking restrictions imposed here require that four markedness constraints be

dominated by some collection of faithfulness constraints.  The alignment constraint ML

and MR must be dominated by either Id(s) or by both Id(l) and Id(a) as shown in ERC 1

and 3.  The markedness constraints against the features length and aspiration must be

dominated by Id(l) or Id(a).  The two markedness constraints WSP and *[+s,−l,−a] do not

have any ranking restrictions imposed by phonotactic learning even though these two

constraints are not violated in any form in the language and, in fact, are undominated in

the target ranking.  The necessary domination of these two constraints is not captured by

the phonotactic learning approach here precisely because no overt form violates them.

Because no overt form violates these constraints no sub-optimal candidate will be

produced from the error-driven learning stage that violates these constraints and hence

the learner will not learn that these forms are necessarily undominated.

As shown above, phonotactic learning produces a set of ERCs that the learner can use to

restrict the ranking during all further stages of the learning algorithm.  After phonotactic

learning the learner is assumed to gain morphological awareness, knowing what the

morphemes of the language are and the morphological decomposition of the overt forms.

The ranking restrictions imposed by phonotactic learning hold for the target language

even after morphological awareness is gained and are maintained throughout the

remainder of the learning algorithm.
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 Section 5.3.  Complete learning algorithm

In this section a new learning algorithm, the full and complete CPR: Contrast Pair and

Ranking information algorithm, based directly on the algorithm presented in Chapter 2 is

described.  The complete CPR algorithm presented here is precisely the algorithm of

Chapter 2 with two components added, phonotactic learning and ranking information

extraction.  There are now four stages to CPR, phonotactic learning, initial lexicon

construction, contrast pair analysis (which incorporates the ranking information

extraction), and final lexical assignment.  The four stages are given below.

14. Overview of the complete CPR learning algorithm
• Stage 1: Phonotactic learning

o Overt forms are assumed to have underlying forms identical to overt
forms

o Error-driven learning using MRCD is applied to input-output pairs
o ERCs from error-driven learning are added to a newly created set of

ERCs that contain all of the known ranking information about the
language

 This global ranking information set is used in all further BCD
applications throughout the algorithm’s remaining stages

• Stage 2: Initial lexical assignment
o Underlying values of features are set for those features of morphemes

that have the same value in every environment
• Stage 3: Contrast pair processing

o Step 1: Error-driven learning is applied to those overt forms whose
constituent morphemes are fully specified, producing ERCs that are
added to the global ranking information set

o Step 2: The contrast pair with the least number of unspecified features
is selected

o Step 3: Local lexica for the selected contrast pair are tested for
consistency using error-driven learning with MRCD

 Features with the same value across all consistent local lexica
are set in the lexicon

 Shared ranking information is extracted from the consistent
local lexica and added to the global ranking information set

o Steps 1-3 are repeated until no further changes occur in the lexicon
• Stage 4: Final lexical assignment and ranking determination

o Remaining unset features are given a default value
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o Error-driven learning with BCD is applied to all overt forms producing
a final ranking

The first stage of the algorithm is the phonotactic learning presented at the beginning of

this chapter.  It assumes only that the learner knows what the overt forms of the language

are and what the full constraint set is.  Phonotactic learning produces a set of ERCs that

represent the necessary ranking conditions imposed by assuming the identity map on the

morphologically unanalyzed overt forms.  These ranking restrictions, captured as ERCs,

are then maintained in a global ranking information set throughout the remainder of the

algorithm and are used whenever BCD is used to determine rankings or consistency of

lexica.  In this way the phonotactic restrictions are maintained throughout the learning

process and are captured in the final ranking the learner produces.

The second stage of the algorithm is the initial lexical construction stage as described in

the previous version of the algorithm in section 2.1.1.   Nothing is changed.  The learner

is aware of the morphological decomposition of the overt forms of the language and

determines which features of the morphemes do not vary across environments.  Those

features that have the same value in every environment are then set to that value in the

underlying lexicon.

The third stage of the algorithm is nearly identical to the previously presented contrast

pair processing stage.  What is added is that shared ranking information is extracted from

the consistent local lexica for a contrast pair.  This stage consists of three steps.
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First those overt forms that are fully specified have error-driven learning using MRCD

applied to them.  This error-driven learning uses the ERCs that were generated during the

phonotactic learning stage.  Error-driven learning on these forms determines if they are

optimal.  If they are not, meaning the ranking restrictions from the phonotactic stage are

insufficient to ensure optimality of the fully-specified forms, then error-driven learning

will produce new ERCs representing novel ranking information required by the fully

specified overt forms.  The ERCs from phonotactic learning and those generated from the

fully specified overt forms are now part of the global ranking requirement ERC set.  They

are used in all further applications of BCD.

The second step of the contrast pair processing stage (stage 3) consists of selecting a

contrast pair.  The contrast pair with the least number of unset features is chosen to be

used in the third step, potentially reducing the number of local lexica tested for

consistency.

For the selected contrast pair, the third step constructs all local lexica for the pair and

tests each for consistency.  Testing for consistency entails applying error-driven learning

using MRCD.  Here the ranking restrictions imposed by the fully specified overt forms

and from phonotactic learning are enforced during the RCD stage.  This, for some

contrast pairs, reduces the number of local lexica that are consistent allowing the learner

to extract more lexical and ranking information from the local lexica than otherwise

would determined.  For the consistent local lexica the learner does two things: determine

lexical information and ranking information necessarily entailed by the consistent local
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lexica.  Features that have the same value across all of the consistent local lexica are set

in the lexicon.  This is accomplished in exactly the same manner as described in Chapter

2.  Determining whether a local lexicon is consistent or not generates a set of ERCs that

the learner can extract shared ranking information from.  For the consistent local lexica

the learner extracts the shared ranking information the ERCs generated from testing for

consistency entail using the algorithm presented in Chapter 4.  This shared ranking

information captured in the form of ERCs is then added to the set of global ranking

requirements containing the ERCs generated from phonotactic learning and from the

processing of the fully specified overt forms.  This combined set of ERCs then is retained

for each further application of BCD.

These three steps of the contrast analysis stage, error-driven learning on the fully

specified forms, selection of the contrast pair with the least number of unset features, and

extraction of lexical and ranking information from the consistent local lexica, are then

repeated until no further lexical information can be obtained from any contrast pair.

The final stage of the algorithm produces a complete lexicon and ranking by assigning a

default feature value to each of the features that remain unset and then applying BCD to

the now fully specified overt forms of the language.  The contrast analysis stage is not

guaranteed to set all features (and in many cases will not) and hence some mechanism for

setting feature values is needed.  Often, though not always, the features that remain unset

are fully predictable from other features in the overt form and so any value will suffice.

A default value is assumed for each feature to accomplish this.  Throughout the
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application of the algorithm ranking restrictions are generated in the form of ERCs.

While potentially quite restrictive they alone do not necessarily impose a ranking that

will generate the given overt forms.  The ERCs from the global ranking requirements set

used with BCD will do so.  This assumes that no features were incorrectly set during any

of the feature setting stages.  Given the assumptions about the linguistic system no

features can be incorrectly set during the initial lexical assignment and contrast pair

processing stage.  Features could be set incorrectly during the final lexical assignment

stage.

It is important to know what type of information is generated and where that information

is generated and how that information is used.  In CPR, information about the grammar,

that is ranking information, is generated solely as ERCs.  These ERCs are generated in

three places: during phonotactic learning, during error-driven learning on the fully

specified overt forms, and from ranking information shared across consistent local lexica

of a contrast pair.  The ranking information is then used whenever BCD is used; so it is

used, again, in three places, during error-driven learning on the fully specified overt

forms, during the checking of consistency of the local lexica, and during the

determination of a final ranking.

Lexical information is generated in three places: during the initial lexical assignment of

non-alternating features, from the uniform values of consistent local lexica, and from the

final lexical assignment of features to their default values.  Specifying the features of

morphemes restricts the potential lexical space and restricts the potential rankings of the
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grammar.  In this way specification of underlying features impacts the extraction of

ranking information by reducing the number of rankings that could produce the given

forms by reducing the number of local lexica for a contrast pair.  So the specification of

the lexicon can produce ranking information during the processing of the fully specified

overt forms and through the extraction of ranking information from the consistent local

lexica.  Specification of features also restricts which local lexica are potentially

consistent.  This allows lexical information gained from one contrast pair to increase the

lexical information gained from another.

In the next section this interrelatedness of the lexical specification and ranking

restrictions is demonstrated by the application of the algorithm to the problematic

language presented in Chapter 3.

Section 5.4.1.  Application of complete CPR algorithm

In this section the complete CPR algorithm described above is applied to the language

given in Chapter 3 that presented a problem for the first version of the algorithm (given in

Chapter 2).  This language is the same one that phonotactic learning was applied to at the

beginning of this chapter.  The two components added to the original algorithm,

phonotactic learning and the extraction of shared ranking information from the ranking

restrictions imposed by the consistent local lexica, contribute enough information for the

learner to determine the necessary feature specifications of the given language.  The

original version of the algorithm did not accomplish this.  In the application of this
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augmented algorithm we will see that the newly acquired ranking information will

capture this necessary entailment by reducing the number of consistent local lexica.

Information from each stage of the algorithm except the final stage is used to determine

the correct feature specification; phonotactic learning restricts possible rankings, the

initial lexical construction reduces the number of consistent local lexica, ranking

information from contrast pairs are used with other contrast pairs and exclude potential

local lexica allowing the learner to set necessary feature values.

Section 5.4.2.  The language repeated

The language the learner is attempting to learn is the same as given at the beginning of

this chapter.  The ranking and mappings of the underlying forms are repeated below.

15.  WSP, *[+s, –l, –a] >> Id(s) >> ML >> MR >> Id(l) >> {NoAsp, *V:} >> Id(a)

16. Mappings of language

This language has four distinct roots and three distinct suffixes.  Recall that there are

three features in this linguistic system, stress, length, and aspiration.  In this language the

feature aspiration is completely predictable from the featural values of stress and length.

Non-stressed syllables always surface as short and −a because WSP outranks Id(l)

/stress, length, asp/ ka /−XX/ sá  /+−X/ záa /++X/
pa    /−−X/ pháka pashá pazáa
baa  /−+X/ báaka bashá bazáa
tá     /+−X/ tháka thása tháza
dáa  /++X/ dáaka dáasa dáaza
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ensuring no long unstressed vowels surface and because NoAsp outranks Id(a).  Stressed

syllables surface as either long or +a but never both.  The constraint *[+s, –l, –a] is

undominated and so stressed syllables must be either long or +a.  And stressed syllables

are never both long and +a for the same kind of reason unstressed syllables are never long

or +a.  The constraint *[+s, –l, –a] only requires that one of the features long or aspirated

surface as + under stress.  Which value is chosen is determined by underlying length

since Id(l) dominates Id(a) along with *V: and NoAsp.  Because of this aspiration is

completely predictable from the underlying specification of length and stress.

Length and stress must be specified in all underlying forms except for the suffix ka.

Because the language has ML dominating MR and length only is contrastive under stress,

length is not contrastive under the non-stressed suffix ka.  Any underlying specification

of length and a for ka will result in the same alternations under the given ranking.

The feature of most concern for this discussion is the length of baa.  In the target

language baa is necessarily long.  As demonstrated in Chapter 3, if baa is short there is no

ranking that is consistent with all of the forms of the language.  The learner must

determine that baa must be set and must be set to long.  But in the application of the un-

augmented version of the algorithm the learner failed to do just that.  By checking for

consistency of local lexica and using only ranking information from fully specified overt

forms in every contrast pair containing baa the learner found two consistent local lexica,

one with baa long and one with baa short.  The learner failed to determine that baa short

is not consistent with all of the overt forms.  As shown in the next few sections the new
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algorithm will detect this.  Phonotactic learning and ranking information from the

consistent local lexica along with the previously gained information from the fully

specified overt forms and the contrast pairs will provide enough information for the

learner to determine that r2 must be specified and specified long.

Section 5.4.3. The algorithm applied: Stage 1, Phonotactic learning

The first stage of the algorithm applies the phonotactic learning algorithm described at

the beginning of this chapter.  Phonotactic learning assumes that the phonotactically

distinct overt forms have underlying forms identical to their overt forms.  As described in

the application of phonotactic learning above this language has four phonotactically

distinct overt forms, rhása, ráasa, rashá, and rasáa.  The process of phonotactic learning

for this language will not be described in detail here since this is the same language

phonotactic learning is applied to in the above discussion of phonotactic learning.

The results of phonotactic learning are ranking restrictions.  The ranking restrictions

obtained from this stage of the algorithm are given below in 17.

17. Ranking restrictions of overt forms rhása, ráasa, rashá, and rasáa

WSP *[+s,−l,−a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
1 L L W W
2 L L W W
3 L L W W
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These ERCs capture the total ranking restrictions extracted during the phonotactic

learning stage on the target language and are maintained throughout the algorithm in the

global ranking requirement set of ERCs.

Section 5.4.4. The algorithm applied: Stage 2, Initial lexical construction

The second stage of the algorithm constructs an initial partial lexicon.  Those features

that do not alternate on a given morpheme are set in the lexicon to their surface value.

The overt forms of the language and their necessary underlying specifications are given

below in 18.

18. Mappings of language

Here again there are four roots and three suffixes.  An ‘X’ in the underlying specification

in 18 signifies the necessary underlying specification.  So, for example, baa must be

underlying specified as unstressed and long.  The underlying specification for the a value

of baa is immaterial; the target ranking of the language will produce the same surface

forms for the given suffixes whether baa is underlyingly +a or −a.  As discussed above,

none of the underlying values of a for any of the morphemes need be set to either value;

the target ranking will produce the correct output for either.

/stress, length, asp/ ka /−XX/ sá  /+−X/ záa /++X/
pa    /−−X/ pháka pashá pazáa
baa  /−+X/ báaka bashá bazáa
tá     /+−X/ tháka thása tháza
dáa  /++X/ dáaka dáasa dáaza
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The algorithm at this stage attends to those features that do not alternate for a given

morpheme and sets those values in the lexicon.  So, for example, the length of pa never

varies; it is always short.  So the algorithm sets the feature length for pa to short.  Notice

it is not necessary that all features of a given morpheme not alternate for the algorithm to

set the feature value.  The feature values of stress and aspiration vary for pa but because

the length of pa does not it is set in the lexicon as short.  This process is carried out for all

of the features that do not alternate for all of the morphemes.  The results of this process

are given below.

19. Lexicon after initial lexical construction stage

/s l a/ /s l a/
pa /?−?/ ka /−−−/
baa /??−/ sá /?−?/
tá /+−+/ záa /??−/
dáa /++−/

The ‘?’ means that that feature has not been set yet in the lexicon.  So for baa the a value

is set to − while the stress and length remain unset.  Notice the difference in specified

underlying values and necessary underlying values.  Each of the morphemes need not

have a particular value for aspiration and yet five of the seven morphemes have the

aspiration value specified.  This comes about because the a value is predictable from the

values of stress and length and even though either a value is possible for any of the

morphemes the stress and length value cause the a value not to alternate on the surface.

In these forms the algorithm sets the non-alternating values of a in the lexicon.  It in no

way has determined that a is predictable, only that some forms have non-alternating a
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values.  The fact that a is predictable is a property of the complete ranking and is

obscured from the learner at this time.

At the end of this stage the learner has set some of the features of the lexicon, though not

all, and has determined some ranking restrictions imposed by the phonotactics.  The

learner needs more information about both the lexicon and the ranking to learn this

language.

Section 5.4.5. The algorithm applied: Stage 3, Contrast pair processing

The learner now proceeds to the contrast pair processing stage.  This stage is composed

of three steps that are repeated until no further changes occur in the lexicon.  The first

step is error-driven learning applied to the fully specified overt forms.  At the end of the

second stage there were three morphemes that were fully specified, tá, dáa, and ka, and

consequently two overt forms that are fully specified, tháka and dáaka.  The algorithm

begins by attempting to parse /táka/ using the hierarchy produced by BCD on the ERCs

from phonotactic learning.  This hierarchy is given below.

20. Initial hierarchy before parsing /táka/

{WSP, [+s,−l,−a]} >> Id(s) >> {ML, MR} >> Id(l) >> {*V:, NoAsp} >> Id(a)

This hierarchy is one of several that is consistent with the ERCs from phonotactic

learning.  In the construction of this hierarchy BCD has a choice of which faithfulness

constraint to rank highest; any of the three faithfulness constraints will free two
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markedness constraints for ranking.  Id(s) frees ML and MR while Id(l) and Id(a) free

*V: and NoAsp.  An arbitrary choice must be made.  In the application of this algorithm I

decided to select a hierarchy that is as close to the target hierarchy as possible when BCD

is presented with an arbitrary ranking decision.  Here this hierarchy is chosen since the

target language ranks Id(s) above Id(l) and Id(a), Id(s) is chosen.  This ranking

information about the target language is unavailable to the learner and in a complete

investigation of every path this algorithm could take each decision point would be

investigated.  This choice of ranking by the analyst and not the learner (which is only

made when there is an arbitrary choice to be made) is done with the intuition that parsing

during error-driven learning with a hierarchy that respects more of the target ranking’s

restrictions will be less informative than parsing with a hierarchy that is more dissimilar

from the target ranking.  This intuition comes from the fact that correct parsing does not

produce a winner-loser pair and consequently does not provide the learner with new

ranking information.  Incorrect parses are informative while correct parses are not.

Using the hierarchy derived from BCD on the ERCs from phonotactic learning on the

two forms /táka/ and /dáaka/ is uninformative.  That is, the hierarchy in 23 used to parse

the underlying form of /táka/ produces the correct output of tháka.  Similarly the

hierarchy in 23 used to parse the underlying form of /dáaka/ produces the correct output

of dáaka.  So, parsing of the fully specified overt forms produces no winner-loser pairs

and consequently no ranking information as expected since these same mappings were

parsed during the phonotactic learning stage.
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The learner now selects the contrast pair with the least number of unset features (though,

of course, non-zero number of unset features).  At this stage of the learning algorithm

there are 19 contrast pairs and of those 19 four have exactly two unset features.  All

others have more than two unset features.  The four contrast pairs are listed below.

21. Four contrast pairs with two unset features

/paka/ ~ /dáaka/ /baaka/ ~ /taka/ /tásá/ ~ /dáasá/ /tázáa/ ~ /dáazáa/
pháka ~ dáaka báaka ~ tháka thása ~ dáasa tháza ~ dáaza

The algorithm randomly selects one of these four minimally unset contrast pairs, say paka

~ dáaka.  Of the three morphemes in this contrast pair pa is the only morpheme with

unset features, stress and aspiration.  These two unset features give rise to four local

lexica for the contrast pair, one lexicon for each of the combinations of stress and

aspiration for pa.  The length value of pa has already been set in the lexicon as minus and

all features of ka and dáa are set.  The suffix ka is /s: −, l: −, a: −/ and the root dáa is /s: +,

l: +, a: −/.  These two morphemes underlying values do not vary across the local lexica,

only the values for stress and aspiration of pa.  The four local lexica are given below.

22. Local lexica for contrast pair paka ~ dáaka

pa stress pa aspiration
LL1 − −
LL2 − +
LL3 + −
LL4 + +
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As it turns out, MRCD applied to local lexicon one and four yields rankings that produce

the target overt forms and hence the algorithm does not set any underlying features while

processing this contrast pair.  In fact, none of the initial four contrast pairs yield lexical

information at this stage of processing.  The next pair that does yield lexical information

during the processing of contrast pairs has four unset features and hence 24 = 16 local

lexica.

As discussed in chapter 3 the algorithm (without the use of ranking information extracted

during the processing of contrast pairs) sets some, but not all, of the underlying features

of the morphemes of the language during the contrast pair processing stage.

Furthermore, it fails to set crucial features of the language, features that must be set to a

specific value for the language to be correctly learned.  Repeated below is the lexicon that

was constructed by the initial lexical construction stage.

23. Lexicon after processing of contrast pairs without using shared ranking
information

/s l c/ /s l c/
pa /−−?/ ka /−−−/
baa /−?−/ sá /+−?/
tá /+−+/ záa /?+−/
dáa /++−/

Section 5.4.6.1. Stage 3, Contrast pair processing, ranking information extraction

The previous section summarized the processing of the contrast pairs that occurs when no

ranking information is gathered from the pairs during the processing stage.  This section
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will show that first, ranking information can be extracted from the ERCs generated while

checking for consistency of local lexica, and second, that this ranking information when

used with a different contrast pair will allow the learner to set a feature that would not

have been set by only checking for uniform feature values across consistent lexica.  This

will demonstrate how lexical information gives rise to ranking information and ranking

information, in turn, gives rise to further lexical information.

The learning algorithm, without any ranking information from consistent local lexica,

will set nearly all of the features of the language in question as is discussed in Chapter 3.

The resultant lexicon after the processing of contrast pairs (but before the setting of

default values) when using the original version of the algorithm is given below.

24. Lexicon after processing of contrast pairs without using shared ranking
information

/s l c/ /s l c/
pa /−−?/ ka /−−−/
baa /−?−/ sá /+−?/
tá /+−+/ záa /?+−/
dáa /++−/

Recall that two of these unset features must have specific values.  The length of baa must

be long and zaa must be stressed.  The algorithm presented here with the two new sources

of information is able to determine that baa must be long precisely because it is able to

capture ranking information imposed by one contrast pair and restrict which are the

consistent local lexica for another contrast pair.  The next section demonstrates the

extraction of the shared ranking information from the relevant contrast pair and is
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followed by a section showing this ranking information being used to set the value of the

length of baa.

Section 5.4.6.2. Ranking information extraction

The contrast pair pasá ~ dáasá (which surfaces as pashá ~ dáasa) is the contrast pair that

produces ranking information that allows the feature stress to be set in baa.  Here I step

through the processing of this contrast pair and show the ERCs that are extracted from

the consistent local lexica.

This contrast pair has, at this point in the processing, two unset features, the a values for

pa and for sá.  The known underlying specifications for the three morphemes are in 29.

25. Fixed lexical specifications for contrast pair

/s l a/ /s l a/
pa /−−?/ sá /+−?/
dáa /++−/

The two unknown feature values give rise to four local lexica for the contrast pair defined

below.

26. Local lexica for contrast pair

pa a sá a
LL1 − −
LL2 − +
LL3 + −
LL4 + +
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The first step of the algorithm’s processing of this contrast is the determination of

consistency of the local lexica.  As will be shown, all four local lexica are consistent and

consequently no lexical information will be extracted from this contrast pair.  But in the

determination of consistency ERCs will be generated and ranking information will be

gained.

Local lexicon 1 for pashá ~ dáasa

The consistency check for the first local lexicon (that lexicon with the a values of pa and

sá set to −a) starts with the hierarchy gained from phonotactic learning repeated below.

27. Phonotactic learning hierarchy

{WSP, *[+s, −l, −a]} >> Id(s) >> {ML, MR} >> Id(c) >> {*V:, NoAsp} >> Id(l)

Error-driven learning proceeds on the first overt form of the contrast pair, pashá.  The

hierarchy above does not produce the correct output of pashá but rather the output pasáa.

This creates a winner-loser pair given below.

28. Winner-loser pair generated from first pass of error-driven learning

/pasá/ WSP *[+s,-l,-a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
1 pashá ~

pasáa
W L W L
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BCD applied to this ERC along with the global ranking requirements produce another

hierarchy that is used to reparse /pasá/.  That hierarchy, given below, successfully parses

the input /pasá/ producing the output pashá.

29. Ranking after first winner-loser pair generated

{WSP,*[+s,−l,−a]}>>Id(s) >> {ML, MR} >> Id(l) >> *V:, NoAsp >> Id(a)

The first overt form now has successfully been parsed.  The algorithm then attempts to

parse the second overt form with the same hierarchy as was used for the successful

parsing of the first overt form.  This hierarchy incorrectly parses the input /dáasá/

producing the output dashá.  This incorrect output along with the correct output of dáasa

is used to create another winner-loser pair.  This winner-loser pair is given below.

30. Winner-loser pair generated from parsing the second overt form

/dáasá/ WSP *[+s,-l,-a] *V: No
Asp

ML MR Id(s) Id(l) Id(a)

1 dáasa ~
dashá

L W W L W W

BCD is then applied to this ERC along with the ERC generated from the parsing of the

first overt form and the ERCs from phonotactic learning to produce the following

hierarchy.

31. Hierarchy generated from BCD

{WSP,*[+s,−l,−a]}>>Id(s) >>ML >>MR >> Id(l) >> *V:, NoAsp >> Id(a)
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This hierarchy then successfully parses both the input /dáasá/ and the input /pasá/

producing the correct outputs for the two overt forms of the contrast pair demonstrating

that this local lexicon is consistent.  The hierarchy above with these feature settings

produces the correct outputs.  While checking for consistency of this local lexicon two

ERCs were created.  These are the ranking restrictions imposed by this local lexicon.

These ERCs are then kept until the checking for consistency of all of the local lexica has

been completed.

Local lexicon 2 for pashá ~ dáasa

The second local lexicon has the underlying value for a for pa set to −a and the

underlying value for a for sá set to +a.  This local lexicon is also consistent.  Error-driven

learning applied to the two overt forms of the contrast pair produces two winner-loser

pairs.  The resulting ERCs and the hierarchy that successfully parses the two overt forms

are given below.  The step-by-step description of the algorithm processing these two

forms is omitted for this local lexicon and the remaining two also.

32. Resulting ERCs from error-driven learning on local lexicon two

/dáasá/ WSP *[+s,-l,-a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
1 dáasa ~

dashá
L W W L W L

2 dáasa ~
dáasha

W L

33. Resulting ranking that successfully parses the two overt forms
{WSP,*[+s,−l,−a]}>>Id(s) >>ML >>MR >> Id(l) >> *V:, NoAsp >> Id(a)



144

Local lexicon 3 for pashá ~ dáasa

The third local lexicon is also consistent.  The underlying specifications for a for pa and

sá are +a and −a respectively.  Error-driven learning on the two overt forms produces two

winner-loser pairs, one for each of the two overt forms in contra-distinction to the

previous local lexicon where one of the two overt forms was the driving force behind the

creation of both winner-loser pairs.

34. Resulting ERCs from error-driven learning on local lexicon three

WSP *[+s,-l,-a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
1 pashá ~

phashá
W L

2 dáasa ~
dashá

L W W L W W

35. Resulting ranking that successfully parses the two overt forms
{WSP,*[+s,−l,−a]}>>Id(s) >>ML >>MR >> Id(l) >> *V:, NoAsp >> Id(a)

Local lexicon 4 for pashá ~ dáasa

Finally, the local lexicon with both values of a set to +a is also consistent.  Error-driven

learning produces two winner-loser pairs given below.

36. Resulting ERCs from error-driven learning on local lexicon four

WSP *[+s,-l,-a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
1 pashá ~

phashá
W L

2 dáasa ~
dashá

L W W L W L

37. Resulting ranking that successfully parses the two overt forms
{WSP,*[+s,−l,−a]}>>Id(s) >>ML >>MR >> Id(l) >> *V:, NoAsp >> Id(a)
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Ranking extraction from the four local lexica

After determining that all four local lexica are consistent the algorithm inspects whether

any lexical information can be extracted from the consistent local lexica.  In this case the

answer is no.  Since all four local lexica are consistent no feature value has a uniform

value across consistent local lexica and hence no lexical information is gained.  Even

though no lexical information is available to the learner ranking information is.  Checking

for consistency of the local lexica produced four sets of winner-loser pairs that the learner

now turns to to extract shared ranking information.  The four sets of ERCs created during

consistency checking are given below.  These are the sets that the ranking extraction

algorithm is applied to.

38. ERC set 1 from local lexicon 1
Set 1 WSP *[+s,-l,-a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
1.1 W L W L
1.2 L W W L W W

39. ERC set 2 from local lexicon 2
Set 2 WSP *[+s,-l,-a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
2.1 L W W L W L
2.2 W L

40. ERC set 3 from local lexicon 3
Set 3 WSP *[+s,-l,-a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
3.1 W L
3.2 L W W L W W

41. ERC set 4 from local lexicon 4
Set 4 WSP *[+s,-l,-a] *V: NoAsp ML MR Id(s) Id(l) Id(a)
4.1 W L
4.2 L W W L W L

The first step of the ranking extraction algorithm is to compute the fusional closure of

each of the four ERC sets.  The result of this step is given below.



146

42. Fusional closure of Set 1
WSP *[+s,−l,−a] *V: *+a ML MR Id(s) Id(l) Id(a)

1.1 W L W L
1.2 L W W L W W
1.1 o 1.2 L L W L W L

43. Fusional closure of Set 2
Set 2 WSP *[+s,−l,−a] *V: *+a ML MR Id(s) Id(l) Id(a)
2.1 L W W L W L
2.2 W L

44. Fusional closure of Set 3
Set 3 WSP *[+s,−l,−a] *V: *+a ML MR Id(s) Id(l) Id(a)
3.1 W L
3.2 L W W L W W
3.1 o 3.2 L W W L W L

45. Fusional closure of Set 4
Set 4 WSP *[+s,−l,−a] *V: *+a ML MR Id(s) Id(l) Id(a)
4.1 W L
4.2 L W W L W L

Notice that in the fusional closure of two of the four ERC sets, namely Set 2 and Set 4, no

new ERCs were introduced in calculating the fusional closure.  In these cases the fusion

provides no transitive ranking relations implied by the conjunction of the two ERCs.  Set

2 and Set 4 were already fusionally closed.

The ranking extraction algorithm now has the four sets from which it will attempt to

extract ranking information.  It attends to each of the constraints in turn, checking to see

if there are ERCs in each of the sets that have an L in that constraint.  For these four sets

there are only three constraints that have ERCs with an L for that constraint in each of the

sets, *V:, MR, and Id(a).  The results of joining the selected ERCs for each of the
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constraints are given below.  The constraints WSP and *[+s,−l,−a] are omitted from the

tableaux because no ERCs contain any ranking information about these two constraints.9

46. Domination information for *V:
*V: *+a ML MR Id(s) Id(l) Id(a)

1.2 ⊕ 2.1 ⊕ 3.2 ⊕ 4.2 L W W L W W
1.2 ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.2 L W W L W W
(1.1 o 1.2) ⊕ 2.1 ⊕ 3.2 ⊕ 4.2 L W W L W W
(1.1 o 1.2) ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.2 L W W L W L

47. Domination information for MR
*V: *+a ML MR Id(s) Id(l) Id(a)

1.2 ⊕ 2.1 ⊕ 3.2 ⊕ 4.2 L W W L W W
1.2 ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.2 L W W L W W
(1.1 o 1.2) ⊕ 2.1 ⊕ 3.2 ⊕ 4.2 L W W L W W
(1.1 o 1.2) ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.2 L W W L W L

48. Domination information for Id(a)
*V: *+a ML MR Id(s) Id(l) Id(a)

1.1 ⊕ 2.1 ⊕ 3.1 ⊕ 4.1 W W W W L
1.1 ⊕ 2.1 ⊕ 3.1 ⊕ 4.2 W W W W L
1.1 ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.1 W W W W L
1.1 ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.2 W W W W L
1.1 ⊕ 2.2 ⊕ 3.1 ⊕ 4.1 W W W L
1.1 ⊕ 2.2 ⊕ 3.1 ⊕ 4.2 W W W W L
1.1 ⊕ 2.2 ⊕ (3.1 o 3.2) ⊕ 4.1 W W W W L
1.1 ⊕ 2.2 ⊕ (3.1 o 3.2) ⊕ 4.2 W W W W L
(1.1 o 1.2) ⊕ 2.1 ⊕ 3.1 ⊕ 4.1 W W W L
(1.1 o 1.2) ⊕ 2.1 ⊕ 3.1 ⊕ 4.2 W W W L
(1.1 o 1.2) ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.1 W W W L
(1.1 o 1.2) ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.2 L W W L W L
(1.1 o 1.2) ⊕ 2.2 ⊕ 3.1 ⊕ 4.1 W W W L
(1.1 o 1.2) ⊕ 2.2 ⊕ 3.1 ⊕ 4.2 W W W L
(1.1 o 1.2) ⊕ 2.2 ⊕ (3.1 o 3.2) ⊕ 4.1 W W W L
(1.1 o 1.2) ⊕ 2.2 ⊕ (3.1 o 3.2) ⊕ 4.2 W W W L

                                                  
9 This is because WSP and *[+s, -l, -a] are never violated on the surface and the
generated rankings from BCD place them at the top of the hierarchy ensuring that sub-
optimal candidates produced will not violated WSP and *[+s, -l, -a].
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There is clearly quite a bit of redundant information here.  In fact, just focusing on the

ERCs generated from the constraint *V: and MR (those ERCs in 50 and 51 above) it is

the case that these two sets of ERCs are identical.  This is because the ERCs across all

four of the ERC sets that have an L in *V: are exactly the same as the ERCs from each of

the ERC sets that have an L in MR.  Consequently, the algorithm applied to these

identical ERCs will produce an identical set of shared ranking information.  While each

of these ERCS are entailed by each of the ERC sets there is no need to maintain identical

ERCs from contrast pair to contrast pair.  Simply by discarding identical ERCs and those

ERCs that are entailed by a single other ERC we reduce the number of ERCs the learner

adds to their list from 24 to 2.  These two ERCs are given below.

49. Ranking entailments from the local lexica

*V: *+a ML MR Id(s) Id(l) Id(a)
(1.1 o 1.2) ⊕ 2.1 ⊕ (3.1 o 3.2) ⊕ 4.2 L W W L W L
1.1 ⊕ 2.2 ⊕ 3.1 ⊕ 4.1 W W W L

As shown in the next section the crucial ranking requirement imposed by these two ERCs

is the domination of Id(a).  The first ERC in 53 requires that Id(a) be dominated by one of

NoAsp, ML, or Id(l).  This is the key ranking requirement that will provide enough

information to set the length feature of sá in the next contrast pair.  Id(a) must be

dominated in each of these local lexica because of the shared morpheme sá in the contrast

pair.  In the local lexicon where sá is +a we see that sá in the overt form dáasá, which

surfaces as dáasa, must surface as −a requiring that NoAsp dominate Id(a).  In the local

lexica where sá is set to −a the constraint Id(a) still must be dominated.  Because

*[+s,−l,−a] is never violated in the language and sá receives stress in the overt form pasá
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(as pashá) the morpheme must surface as either long or +a.  Since it surfaces as +a and it

is underlyingly short and −a one of the two constraints Id(l) or *V: must dominate Id(a)

to force the stressed morpheme to surface as +a and not long.  So the differing ranking

requirements across consistent local lexica all require that Id(a) be dominated by one of

the three constraints Id(l), *V:, or NoAsp.

Section 5.4.6.3 Using the ranking information

This ranking information extracted from the previous contrast pair will prove crucial to

determining the underlying specification for length for the morpheme baa.  Having

extracted the ranking information from the previous contrast pair the algorithm processes

the contrast pair consisting of the of the overt forms báaka and bashá.  This contrast pair

consists of three morphemes, baa, ka, and sá.  Of these morphemes baa and sá have unset

feature values, baa’s length and the a value for sá.  The third morpheme ka has all of its

features set.  The set features for these three morphemes are given below followed by the

four local lexica defined by the two unset feature values of baa and sá.
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50. Currently set lexical specifications for contrast pair báaka ~ bashá

/s l a/ /s l a/
baa /−?−/ ka /−−−/

sá /+−?/

51. Local lexica for contrast pair báaka ~ bashá

baa length sá a
LL1 − −
LL2 − +
LL3 + −
LL4 + +

To show that the algorithm sets the length of baa it suffices to show that the local lexica

that have baa’s length short are inconsistent.  While it suffices to show that there does not

exist a mapping that can produce both of the overt forms for local lexica 1 and 2 it is the

case that given the current ranking restrictions there is no mapping that can produce the

overt form associated with /baaka/ given that baa’s length is short regardless of the output

of the other overt form /baasá/.  Below it is shown that baa cannot be short; no available

ranking will produce the output báaka from /baaka/ when baa is short.

Because it suffices to look at only the form báaka it is acceptable to ignore the feature

values for the morpheme sá, specifically its aspiration feature.  The overt form containing

sá plays no role in setting of the length feature of báaka.  Now sá’s aspiration feature is

the only distinguishing feature between the local lexica 1 and 2, those lexica that have the

length of baa short.  Therefore below when examining báaka there is no need to

distinguish local lexica 1 and 2.
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At this stage in the algorithm the learner has determined minimally the ranking

restrictions imposed by phonotactic learning and the restrictions from the previous

contrast pair.  These are repeated below, the first three ERCs being the phonotactic

restrictions and the fourth and fifth the ERCs imposed from the previous contrast pair;

also shown is the hierarchy they generate.

52. Ranking entailments from the local lexica and phonotactics

WSP *[+s,−l,−a] *V: *+a ML MR Id(s) Id(l) Id(a)
1 L L W W
2 L L W W
3 L L W W
4 L W W L W L
5 W W W L

53. Hierarchy generated from these ERCs
{WSP, [+s,−l,−a]} >> Id(s) >> ML >> MR >> Id(l) >> {*V:, NoAsp} >> Id(a)

This hierarchy is then used to parse the input /baaka/ (which has the underlying value of

short for baa).  The output for this input with this hierarchy is the incorrect output of

bháka.  Because baa is underlyingly short and Id(l) dominates NoAsp and Id(a) the

correct output of báaka cannot surface.  There is no long feature to be faithful to and

hence the root stays short and is unfaithful to its underlying a feature.  This creates a

winner-loser pair given below.
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54. ERC created from incorrect parsing of /baaka/

WSP *[+s,-l,-a] *V: *+a ML MR Id(s) Id(l) Id(a)
6 báaka ~

bháka
L W L W

This ERC is inconsistent with the ranking restrictions imposed by ERCs generated

previously in the algorithm.  The ranking information that leads to inconsistency comes

from two sources, phonotactic learning and the previously encountered contrast pair.

From the ERCs listed in 56 the second ERC (which is from phonotactic learning) and the

fifth ERC (which is from the previous contrast pair) are precisely the ranking restrictions

which lead to inconsistency.  The fusion of these two ERCs with ERC from 58 show that

they are, in fact, inconsistent, as is demonstrated below.

55. The inconsistency of ERCs 2, 5 and 6

WSP *[+s,−l,−a] *V: *+a ML MR Id(s) Id(l) Id(a)
6 L W L W
2 L L W W
5 W W W L

2 o 5 o 6 L L L L

The fusion of all three of these ERCs is a member of L+.  All entries consist either or e or

L, with at least one L, and hence the ranking requirements imposed by these ERCs is

inconsistent.  Because this inconsistency stemmed from only parsing the overt form

/baaka/ and not both of the overt forms of the contrast pair the underlying value of the

feature for a for the morpheme sá, the other morpheme in this contrast pair, is immaterial.

Hence every local lexica that has the underlying value of length for baa set to short will
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be inconsistent and because of this the algorithm will set the underlying value of length

for baa to long.  The local lexica that are consistent for this contrast pair must have the

underlying value of length for baa be long.

The ranking restrictions that lead to the setting of this feature come from two places, the

phonotactic learning phase and the extraction of the shared ranking information from the

previous contrast pair.  Both sources of ranking information are necessary to set this

feature.  Indeed, inspecting the fusion of the three ERCs in 59, it is the case that removal

of any one of these three ERCs will result in a consistent ranking.  Remove any of the

three ERCs and the feature will not be set.  The fusion of 2 and 5 result in the ranking

requirement Id(l) >> {*V:, NoAsp, Id(a)}.  ERC 2 is from the phonotactics and ERC 5 is

from ranking extraction.  Both stages contribute necessary information.  The phonotactics

contribute the requirement that the markedness constraints *V: and NoAsp be dominated

by either of Id(l) or Id(a).  This is because both long and +a morphemes are realized on

the surface and hence one or both of these faithfulness constraints must dominate the

featural markedness constraints.  The shared ranking information from the contrast pairs

requires that Id(a) be dominated by one of *V:, NoAsp or Id(l) as is discussed above.

Identity to an underlying a value cannot cause a morpheme to surface +a, only length and

stress can.  Specifically, only a short and stressed morpheme (or short and unstressed

root) can cause this.  This information is gathered from the contrast pair pashá ~ dáasa.

The alternation of sá, surfacing +a and −a forces this domination of Id(a).  Finally, the

overt form báaka is in conflict with these requirements when the underlying value of

length for baa is short.  When baa is underlyingly short the fact that it surfaces long
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cannot be accounted for because of underlying length; the a value of baa must explain

why it surfaces as long.  The a value of baa is −a, but for this value to be driving the

lengthening of baa under stress either Id(a) must dominate {Id(l) and *V:} or NoAsp

must dominate {Id(l) and *V:}.  But these requirements are in conflict with the fusion of

2 and 5.  Effectively, the phonotactics and ranking requirements imposed by the previous

contrast pair do not allow the a value of a morpheme to determine the length of a

morpheme under stress.  Together they require that a be fully predictable from a

morpheme’s underlying length and stress values.  This imposition of the necessary cause

of lengthening is what is missing from the previous version of the algorithm that lacked

any early phonotactic learning stage.  In the previous version of the algorithm from

Chapter 2 in these contrast pairs there were two explanations for why a morpheme under

stress surfaced long.  Either the morpheme was long and was being faithful to underlying

length or the morpheme was underlyingly −a and was being faithful to underlying a

value.  The second option has been removed with the further ranking information

obtained by this version of the algorithm.

Section 5.5 Summary of algorithm and sources of information

The algorithm presented here captures both ranking and lexical information about the

target language.  The initial stage of the learning algorithm determines ranking

information from the phonotactics of the language.  The second stage of the algorithm

determines lexical information from non-alternating features of the overt forms.  These

two stages are not interrelated.  The phonotactic learning provides no useful information
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for the initial lexical construction stage and the lexical information is not needed for the

phonotactic learning stage.  It is the third stage of the algorithm where these two types of

information, lexical and ranking, directly interact.

For a given contrast pair, the initial lexical information allows the learner to first reduce

its search space significantly by obviating the need to consider all possible underlying

forms.  Initially, only combinations of those features that alternate need be considered.

As more features are set in other contrast pairs fewer and fewer local lexica may be

considered.  The ranking information from the phonotactics and the fully specified overt

forms also plays a role here.  Ranking information may reduce the number of consistent

local lexica increasing the likelihood that the learner will be able to both determine

lexical information and extract shared ranking information from the consistent local

lexica.  The lexical information and ranking information obtained can then impact the

next contrast pair again by possibly decreasing the number of consistent local lexica and

therefore determining lexical information and ranking information.
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Chapter 6. Palauan and implications about the lexicon

The algorithm given in the previous chapter has consequences regarding the underlying

representation of lexical items; it can learn languages in linguistic theories that have

languages that contain lexical items whose underlying representation does not match any

of their surface representations.  In this chapter I discuss the implications for the structure

of the lexicon and investigate the natural language Palauan which is as an example of a

language that has morphemes whose underlying representations do not match any of their

surface allomorphs.  Palauan provides evidence that learning theories must be able to

learn languages that contain lexical items that do not match any of their surface

allomorphs.   Also presented is a linguistic system that contains a language that has the

non-surface matching underlying forms and the learning algorithm presenting in this

dissertation is applied to this language successfully learning it.

Section 6.1.  Implications for the lexicon

The learning algorithms presented in Chapter 2 and Chapter 5 both rely on consistency

checking of local lexica to set underlying values.  During the processing of contrast pairs,

underlying values are set if and only if they have the same value across consistent local

lexica.   There are no other requirements imposed on the setting of features during the

processing of contrast pairs.  This allows for a given morpheme to have its underlying

representation not match any of its surface allomorphs.  This could come about if, during

the processing of contrast pairs, each feature of the underlying form was set by matching
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the feature of a different allomorph in such a way that the underlying form did not match

any of the allomorphs in the language.  In this chapter an example of such a situation is

given.

Besides showing that formal linguistic systems are capable of having languages that have

underlying forms that do not match any surface allomorphs and that these languages are

learnable below I present empirical evidence that natural languages also demonstrate this

type of lexical behavior.  Palauan, as shown below, has precisely these types of

underlying forms.

Section 6.2.  Palauan

As presented in Flora 1974 and discussed in Schane 1974, Palauan presents evidence that

underlying forms may differ from all of their surface allomorphs.  This analysis arises

because of the nature of stress placement in Palauan and the interaction of stress and

vowel quality.  In Palauan the position of stress is predictable; if a word contains a suffix

the word receives final stress, otherwise the word receives penultimate stress.  This is

demonstrated in the forms below.

1. Palauan stress placement

m-téb kr-mám
PRESENT MIDDLE-pull out question-our
‘pull out’ ‘our question’
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The present middle marker is the prefix ‘m-’ and with the verb ‘teb’ the form

receives penultimate stress.  But in the possessive construction ‘kr-mám’ with the

suffix ‘-mam’ the overt form receives final stress.  This pattern of final stress for words

that contain a suffix and penultimate stress otherwise is robust across the forms of the

language.

What causes the necessity of underlying forms that differ from all of their overt forms in

Palauan is not stress placement per se but what happens to stressed and unstressed vowels

and the changing placement of stress that is dependent on the existence or non-existence

of suffixes.  Under stress vowels may be one of five different forms: a, i, e, o, u.  Non-

stressed vowels all reduce to .  This is seen in the words given in 1 above and those

below.

2. Stressed vowels: o, e, i, a, u, and unstressed 

dób-l kér krí-k kr-mám bdú-k
cover opening-
FUTURE(CONS)

question question-my question-our rock-my

‘cover opening’ ‘question’ ‘my question’ ‘our question’ ‘my rock’

In 2 is shown the surface manifestation of each of the six vowels with the five a, i, o, e, u

only surfacing under stress and schwa only surfacing unstressed.  As argued in Schane

1974, faithfulness to underlying vowel quality under stress and reduction to schwa

otherwise necessitates an underlying form for a morpheme that differs from each of its
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surface allomorphs.  Focusing on the root for the verb ‘cover opening’ we can see

precisely this need.

3. Root ‘cover opening’ with three affixes

Present Middle Future
Participle
(conservative)

Future
Participle
(innovative)

Gloss

m-dáb dób-l db-áll ‘cover opening’

In the present middle form of the verb the root receives the present middle prefix ‘m-’.

Because the word has no suffixes it receives penultimate stress and the root itself surfaces

as [dáb] with the first vowel surfacing as [a] and the second vowel reducing to schwa.

In the future participle (conservative) form the root receives the suffix ‘-l’ and because

the word contains a suffix it has final stress.  In this case the root surfaces as [dób] and

the initial vowel of the root reduces to schwa while the second vowel of the root surfaces

faithfully as [o].  Finally, if the suffix itself can bear stress as in the case with the future

participle (innovative) suffix ‘-all’, then both of the vowels of the root will reduce to

schwa as shown in the word ‘db-áll’.

So, for the root ‘cover opening’ there are three allomorphs, [dáb], [dób], and

[db].  Vowel quality under stress is not predictable based on stress placement as

alluded to above and shown below, hence under stress the overt forms must be being

faithful to the underlying vowel quality of the root.  Therefore the underlying root for
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‘cover opening’ is /daob/.  Note that this form does not match any of the three surface

allomorphs of the root and yet for the vowels to be faithful to the underlying specification

of vowel quality under stress this must be the underlying form.

In the forms below are shown that each of the five vowels may surface in the positions

that may receive stress and hence vowel quality is lexically specified.

4. Stress position does not predict vowel quality

Verbs
Present Middle Future

Participle
(conservative)

Future
Participle
(innovative)

Gloss

m-dáb dób-l db-áll ‘cover opening’

m-téb tíb-l tb-áll ‘pull out’

Nouns
Unpossessed ‘My –‘ ‘Our –‘ Gloss
kér krí-k kr-mám ‘question’

bád bdú-k bd-mám ‘rock’

The four forms presented above also all have the property that their underlying forms

differ from each of their surface allomorphs; the phenomenon is not limited to the forms

presented at length above.  Following similar reasoning to the analysis above the four

roots’ underlying forms are given below.



161

5. Underlying forms for the four roots above

‘cover opening’ daob
‘pull out’ teib
‘question’ keri
‘rock’ badu

Below will be given an optimality theoretic analysis of the phenomenon of interest.  It

suffices at this point to conclude that natural languages exhibit underlying forms that

differ from each of their surface allomorphs.  In the next section I present a linguistic

system based on the Palauan language that contains a language that exhibits this property

and show that the algorithm presented in Chapter 5 will learn this language and assign

underlying forms to roots that do not match any surface allomorphs.

Section 6.3.  A linguistic system that contains a pseudo-Palauan language

The linguistic system presented here is in many ways similar to the linguistic systems

presented in the previous chapters: insertion and deletion are banned, there is a quite

restricted typology of vowel behaviors, and morphological structure is severely restricted.
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Morphological structure

Overt forms in this linguistic system are composed of either a free-standing root or a root

and a suffix.  There are no prefixes in this linguistic system.  Roots and suffixes

themselves are restricted in their composition.  Roots are required to be bi-syllabic

always.  Suffixes may be mono-syllabic or bi-syllabic.  The linguistic system does not

allow insertion or deletion, so overt forms of the language have two, three, or four

syllables.  Non-affixed roots always surface as two syllables because underlyingly roots

are always bi-syllabic.  A root with a mono-syllabic suffix will surface with three

syllables and a root with a bi-syllabic suffix will have four syllables.  A word may be

composed of precisely one root and one suffix or only one root.  Multiple suffixes affixed

to a root are not allowed.

Features

Syllables of roots and suffixes are specified for stress and vowel quality only.  Stress is a

binary feature; a syllable may be underlyingly stressed or not.  Because syllables are

specified for stress (and not morphemes) a root, which is always bi-syllabic, may have

each of its syllables either specified for stress or not independent of the other syllable

allowing for a four-way distinction between roots with regards to stress.  A root may have

either both syllables unstressed or both stressed or the first unstressed and the second

stressed or the first stressed and the second unstressed.  Stress itself is cumulative; it may

appear on only one syllable in the output.
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Syllables are also specified for vowel quality.  There are three vowels in this system: /i/,

/u/, and //.  A syllable may be specified for precisely one of these vowels.  In effect, this

is a three-way feature system for vowel quality.  The results presented below regarding

underlying morphemes not matching any of their surface allomorphs do not rely on this

three-way system.  A similar result can be constructed using two binary features for

vowel quality that yields four distinct vowels but for expository sake a three-way feature

system is used.  Two of the vowels, /i/ and /u/ are labeled peripheral vowels, while the

schwa is labeled a central vowel.  This distinction between types of vowels will be used

in the construction of some of the constraints of the system.

Constraints

The linguistic system has eight constraints, six markedness constraints and two

faithfulness constraints. 10  The markedness constraints are given below.

6. *V(peripheral)/unstress Do not have a peripheral vowel be unstressed
7. *V(central)/stress Do not have a central vowel stressed
8. *u Do not have the vowel u
9. NonFinal Do not place stress on the final syllable
10. MainLeft Place stress on the leftmost syllable
11. MainRight Place stress on the rightmost syllable

The first two markedness constraints, *V(peripheral)/unstress and *V(central)/stress,

state preferences for the absence or presence of stress in conjunction with a particular

type of vowel. *V(peripheral)/unstress says do not have a peripheral vowel that is

                                                  
10 This system is based on an analysis of Palauan suggested by Alan Prince (p.c.).  His
proposal included *V(central)/unstress, *V(peripheral)/stress, NonFinal, and Max and
Dep. This system has been modified to remove insertion and deletion.
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unstressed, i.e. [i] and [u] must be stressed.  *V(central)/stress says do not have a central

vowel stressed, i.e. do not stress [].  *u simply says do not have the vowel [u].

MainRight and MainLeft say place stress on the rightmost and leftmost syllable

respectively.  Both of these constraints are evaluated gradiently.  In all of the previous

linguistic systems presented in this dissertation gradient evaluation is identical to non-

gradient evaluation because overt forms are restricted to bi-syllabicity.  In this system

overt forms may have two, three, or four syllables and gradient evaluation is needed.

NonFinal penalizes overt forms that have stress on the last syllable.

This linguistic system also has two faithfulness constraints.  These are given below.

12. Ident(Stress) The stress value must be identical to its input correspondent
13. Ident(Vowel quality) The vowel quality must be identical to its input

correspondent

Ident(Stress) says that the stress value on a syllable in the output form must be identical

to its value in its underlying form.  Ident(Vowel quality) requires that the vowel in the

output have the same value as the vowel in its corresponding input syllable.

Section 6.3.1  Pseudo-Palauan

In this section a language is presented from the above linguistic system that exhibits some

of the behaviors of Palauan and importantly exhibits the same behavior with respect to

some of the morphemes’ underlying forms; specifically, one of the morphemes of this
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language must have an underlying form that is different from any of its surface

allomorphs.

The language is defined by the ranking below.

14. Ranking of pseudo-Palauan
{*V(p)/u, *V(c)/s, NonFinal} >> MR >> {Id(v), Id(s), ML} >> *u

In this language NonFinal is undominated.  This fact ensures that all forms of this

language do not have final stress.  NonFinal immediately dominates MainRight which

dominates Ident(Vowel quality), Ident(Stress), and MainLeft.  Because MainRight

dominates all of the other constraints that could have an influence on stress placement

and NonFinal dominates MainRight stress in this language is always on the penultimate

syllable of the word.

The constraints *V(peripheral)/unstressed and *V(central)/stressed are also undominated.

Looking to *V(central)/stressed first, having this constraint undominated means that the

vowel [] will never be stressed in this language.  Having the constraint

*V(peripheral)/unstressed undominated means that [i] and [u] will never surface

unstressed in any overt form.  So in any given overt form the stressed syllable will always

be either [i] or [u] and all other syllables will [].  This fact together with the fact that

stress will always appear on the penultimate syllable ensures that alternations will occur

in the language.  A root with no suffixes will have initial stress (because it is bi-syllabic)



166

with the first vowel either a [i] or [u] and the second syllable schwa.  If the underlying

specification of the first syllable is either [i] or [u] the surface form will be faithful to that

underlying specification.  If the first vowel is underlyingly schwa it still will receive

stress and it will surface as [i].  Even though *u is ranked at the bottom of the hierarchy it

determines what the vowel will be under stress when the underlying vowel is a schwa.

The overt form cannot be faithful to the schwa and hence the default vowel under stress is

[i].  Regardless of the second syllable’s underlying vowel value it will surface as schwa.

That same root with a bi-syllabic suffix will have both of its vowels surface as schwa.

Stress will be placed on the suffix, which contains the penultimate syllable, and the two

unstressed syllables of the root will necessarily surfaces as schwa.  The underlying

specification of the vowels of the roots is immaterial when stress does not fall on the root.

The distinct morphemes of this language and the mappings the ranking produces are

given below.

15. Mappings of morphemes in this language

                                                  
11 In /v1, s1, v2, s2/ v1 and s1 represents the vowel quality and stress for the first syllable
respectively and v2 and s2 represent the vowel quality and stress for the second syllable
respectively.

/v1, s1, v2, s2 /11 ∅ k  /X,X/ gig /¬u,X,X,X/ sus/u,X,X,X/
pp /¬u,X, ¬u,X / píp ppík ppgíg ppsús
bbu  /¬u,X,u,X / bíb bbúk bbgíg bbsús
dud  /u,X,¬u,X/ dúd ddík ddgíg ddsús
tutu    /u,X,u,X/ tút ttúk ttgíg ttsús
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This language has four distinct roots and three distinct suffixes and 16 distinct overt

forms that arise from the combination of the four roots with the three suffixes along with

the four roots sans suffixes.  The consonants in the morpheme’s names represent

morphemic identity and do not represent any linguistic property besides morphemic

identity.  For the bi-syllabic morphemes there are four features that need to be specified:

the vowel quality and stress value of the first syllable and the vowel quality and stress

value of the second syllable.  For the mono-syllabic suffix only the vowel quality and

stress value of its single syllable need be specified.  The four values of the bi-syllabic

morphemes are represented in the order /v1, s1, v2, s2/ where v1 is the vowel of the first

syllable, s1 the stress value of the first syllable, v2 the vowel of the second, and s2 the

stress of the second.  An ‘X’ means the morpheme can have any value for that feature;

the ranking will produce the same overt forms regardless of that feature’s underlying

specification.  For vowels a ‘¬u’ means that the underlying value for that vowel must be

either schwa or /i/; it may not be /u/.  So, for example, looking at the root ‘dud’, it has

the underlying specification of /u,X,¬u,X/.  This means that the first vowel must be

underlyingly a /u/ and that it may be either underlyingly stressed or unstressed.  The

second vowel of the root ‘dud’ must not be /u/; it must be either /i/ or schwa.  The

second vowel may be either stressed or unstressed as signified by the second ‘X’.

Notice in this language that all of the morphemes do not require any particular value of

stress for any of their syllables.  Any given syllable may be either stressed or unstressed.

This is to be expected in a language that has fully predictable stress.  This language has

penultimate stress and consequently any underlying value of stress for any given syllable
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is immaterial to stress placement.  Though other languages in this linguistic system do

allow non-predictable stress and so the learner must determine that this language has

predictable stress.

Section 6.3.1.1  Root with underlying form not matching any surface allomorphs

This language has a morpheme that has an underlying form that does not match any of its

surface allomorphs.  Consider the root morpheme ‘tutu’.  In the four morphological

environments of this language (the empty environment having no suffix, in the

environment ‘-k’, ‘-gig’, and ‘-sus’) the root surfaces in three distinct ways, [tút],

[ttú], and [tt].  The four words that this morpheme appears in are given again below.

16. Overt forms containing the root ‘tutu’

tút
ttúk
ttgíg
ttsús

The underlying form for ‘tutu’ though must be /u, X, u, X/.  Both of its vowels must be

/u/.  Under stress a vowel must surface as either [i] or [u].  Crucially, in this language a

stressed vowel will surface as a [u] if and only if it is underlyingly /u/.  This is because,

first, Ident(vowel quality) outranks *u.  So an underlying /u/ that receives stress will

maintain its vowel quality and surface as [u].  Secondly, an underlying schwa or /i/ will,

under stress, surface as [i].  This obtains because of two facts.  *V(central)/stress is
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undominated and hence a stressed vowel that is underlyingly schwa or /i/ will not surface

as schwa it will surface as [i].  It surfaces as [i] and not [u] because of the existence of the

constraint *u and the lack of existence of a constraint *i, one that disprefers the vowel [i]

on the surface.  So, because a vowel that surfaces as [u] must be underlyingly /u/ in this

language and because in the overt form tút the first vowel surfaces as [u], it therefore

must be underlyingly /u/.  Also, because in the overt form ttúk the second syllable of

the root surfaces as [u] it must also be underlyingly /u/.  Hence the root ‘tutu’ must have

an underlying specification of /u, X, u, X/.  Regardless of the value of stress for the

syllables in ‘tutu’ the underlying form cannot match any of its surface allomorphs since

none of the overt forms have both of the vowels of ‘tutu’ surface as [u].

In the next section I apply the algorithm to this language and show that this language is

learnable using the learning algorithm given in the fifth chapter.

Section 6.3.2  Learning algorithm applied to pseudo-Palauan

The ranking and mappings of pseudo-Palauan are repeated below.

17. Ranking of pseudo-Palauan
{*V(p)/u, *V(c)/s, NonFinal} >> MR >> {Id(v), Id(s), ML} >> *u

18. Mappings of morphemes in this language

/v1, s1, v2, s2 / ∅ k  /X,X/ gig /¬u,X,X,X/ sus/u,X,X,X/
pp /¬u,X, ¬u,X / píp ppík ppgíg ppsús
bbu  /¬u,X,u,X / bíb bbúk bbgíg bbsús
dud  /u,X,¬u,X/ dúd ddík ddgíg ddsús
tutu    /u,X,u,X/ tút ttúk ttgíg ttsús
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Stage 1: Initial lexical assignment to non-alternating features

The first stage of the learning algorithm assigns underlying values to those features that

do not alternate.  The result of this stage of learning is given in the table below.

19. Results of feature assignment to non-alternating features

/vs,vs/ /vs,vs/
pp /??,??/ k /−/
bbu /??,??/ gig /i+,−/
dud /??,??/ sus/ /u+,−/
tutu /??,??/

After the first learning stage the four roots remain entirely unset for any feature values.

Each syllable of each root receives stress and hence its vowel quality changes from either

[i] or [u] to schwa.  The suffixes on the other hand all are fully specified.  The mono-

syllabic root never receives stress and hence always surfaces as an unstressed schwa.

The final syllables of the two bi-syllabic suffixes also never receive stress and always

surface as an unstressed schwa.  The initial syllables of the two bi-syllabic suffixes

always receive stress (being the penultimate syllable in any form they appear in) and

hence are set to underlyingly stressed.  Also, their vowel quality does not change and

hence is set underlyingly in the initial stage of the learning algorithm.
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Stage 2: Processing of contrast pairs

The second stage of the learning algorithm, which processes the contrast pairs, correctly

sets the vowel quality of all of the vowels that underlyingly must be /u/.  All other feature

values remain unset after this stage.  The results of this stage are given below.

20. Underlying values after the processing of contrast pairs

/vs,vs/ /vs,vs/
pp /??,??/ k /−/
bbu /??,u?/ gig /i+,−/
dud /u?,??/ sus/ /u+,−/
tutu /u?,u?/

As discussed in section 6.3.1.1 overt forms that contain a surface [u] must underlyingly

have the vowel quality /u/.  No other vowel quality will give rise to a surface [u] for any

ranking in this linguistic system.  So, for any contrast pair that contains an overt form that

contains a [u], the vowel quality feature for that syllable will be set to /u/ because all local

lexica having any value other than /u/ will be inconsistent.  Hence all vowel quality

features that must be /u/ will be set during the contrast pair processing stage.

This last statement that the underlying vowel quality /u/ will be set in the contrast pair

processing stage for all overt forms needs one addendum.  First, it is true that any contrast

pair containing a form containing a [u] will set that vowel quality correctly to /u/, but to

set all overt forms containing a [u] each overt form must appear in a contrast pair, else the

contrast pair processing stage will simply not consider the underlying specifications of

that overt form.  Consider the two morphemes ‘dud’ and ‘tutu’.  For the initial vowel
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quality features to be set to /u/ in the morphemes ‘dud’ and ‘tutu’ the contrast

processing stage must evaluate pairs of overt forms that have the property that each overt

form of the pair consists of a single morpheme.  This is because contrast in the initial

syllable for the forms dúd and tút (the two mono-morphemic overt forms that contain

the morphemes ‘dud’ and ‘tutu’) only exists in mono-morphemic overt forms.  All overt

forms of this language that contain more than one morpheme do not contrast in the initial

syllable.  The contrast pair processing stage must contain contrast pairs such as píp and

tút, overt forms that contrast in the initial syllable.

This requirement that contrast pairs contain mono-morphemic forms does not contradict

the previous definition of contrast pairs.  Contrast pairs are defined as pairs of overt

forms that differ on the surface and share a morphological environment.  Appearing in

isolation is a morphological environment and hence contrast pairs need not share a

morpheme.

Stage 3: Final lexical assignment and ranking determination

The final stage of the learning algorithm assigns feature values to those features that have

not been set in any of the previous stages of the learning algorithm and determines a

ranking from all of the overt forms of the language.

I assume that the default value for vowel quality is schwa and the default value of stress

is unstressed.  This leads to the following final lexicon.
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21. Final lexicon

/vs,vs/ /vs,vs/
pp /−,−/ k /−/
bbu /−,u−/ gig /i+,−/
dud /u−,−/ sus/ /u+,−/
tutu /u−,u−/

This is a correct lexicon for this language.  Because the underlying value of stress does

not affect any outputs of the grammar any underlying value of stress may be assigned to

any of the overt forms of the language.  The vowel quality feature is a different matter

though.  Those vowels that surface under stress as [i] must be underlyingly either /i/ or

//.  If they were underlyingly /u/ then they would surface incorrectly under stress as [u].

The assumption that the default value of vowel quality is schwa is not necessary for a

correct lexical hypothesis; the value /i/ would also work.  Crucially, a default value of /u/

must not be chosen else the underlying specifications of the roots pp, bbu, and dud

would be set incorrectly, but with the selection of schwa the correct lexicon is obtained.

During learning there is enough information for the learner to determine that the

underlying value for, say, pp must not be /u/ because in all local lexica this underlying

value leads to inconsistency.  This information though is not retained (or even noted

across local lexica) and hence with a non-judicious choice of default underlying vowel

quality an incorrect lexicon could be chosen in the final stage of learning.  Here this type
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of prohibited lexical choice is not attended to in the learning algorithm; required lexical

selection is.

Error-driven learning on the overt forms of the language then proceeds and produces the

correct ranking given below.

22. Ranking of pseudo-Palauan
{*V(p)/u, *V(c)/s, NonFinal} >> MR >> {Id(v), Id(s), ML} >> *u

So the application of the algorithm to this language has correctly learned the underlying

forms and the ranking.

Section 6.4. Conclusions regarding the lexicon

It is not necessary to restrict the potential underlying forms of a morpheme to one of its

surface allomorphs.  As shown in this chapter it is possible that a linguistic system not

just allows but requires that an underlying form be different from all of its surface

allomorphs.  In the pseudo-Palauan language there is a morpheme ‘tutu’ that has three

surface allomorphs, [tút], [ttú], and [tt], none of which match the underlying form

of the morpheme which must have both the vowel quality features for its two vowels set

to /u/.  This language (and the linguistic system which generates it) is based on the

natural language Palauan.  Palauan itself provides conclusive evidence that languages like

this exist.  Finally, I have shown that a language that has these types of underlying forms

is learnable.  There is no need to exclude these types of languages from linguistic
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theorizing based on empirical evidence, theoretical plausibility, or learnability

considerations.
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Chapter 7. Comparison and conclusions

This final chapter discusses an approach to lexical learning presented in Tesar 2004 and

compares it with the approach presented here and discusses some of the implications and

future directions the research presented here leads to.

Section 7.1 Contrast Analysis

In Tesar 2004 an algorithm using contrast to determine underlying values of features is

presented.  Tesar shows that given certain assumptions about a linguistic system that that

system will have the Faithful Contrastive Feature property (FCF) and that this property

can be used to determine underlying forms.  The FCF says that “if two morphemes

contrast phonologically, they must differ underlyingly in at least one contrastive feature,

and that feature’s values must be faithfully preserved in the outputs of the morphemes in

the contrasting environment.” [Emphasis in original, pp. 4.]  So, given two morphemes

that contrast on some number of features in a given environment, one of those features

that the two morphemes contrast on must be mapped faithfully in both of the morphemes.

Knowing which feature the two morphemes must map faithfully allows the learner to set

the underlying value of the feature in both morphemes.  This is the key to the learning

algorithm presented in Tesar 2004.

Sufficient conditions for having the FCF are precisely those assumptions that are made

about the linguistic systems presented in this dissertation bar one.  For a linguistic system
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to have the FCF features of the system must be binary.  The linguistic systems presented

in the first five chapters have this property; all features are binary.  The last chapter

presents a linguistic system that has a three-valued system.  The vowel quality feature has

three values, /i/, /u/, and //.12  Besides the linguistic system presented in the previous

chapter, all of the linguistic systems presented throughout this dissertation share the same

assumptions as those presented in Tesar 2004 and hence also have the FCF property.

The Contrast Analysis (CA) procedure (presented in Tesar 2004) is an algorithm that uses

the FCF to determine underlying forms.  Because the linguistic systems presented here

have the FCF property it is possible to compare the learning algorithm of this dissertation

with the CA procedure with respect to the setting of underlying forms (the CA procedure

does not attempt to determine a ranking for a language).13  The CA only sets feature

values when “only one surface-differing feature could possibly be faithfully mapped”

[pp. 15].  So, if there are two features that could be possibly faithfully mapped the

algorithm will not set either of those features even if both of those features must

necessarily be faithfully mapped.  Because the CA only sets a feature when a feature is

necessarily faithfully mapped this implies that the algorithm presented in this dissertation

will always set every feature that the CA will set.  If a feature is necessarily faithfully

mapped for a morpheme in an overt form, then an underlying value for that morpheme

                                                  
12 Though it has a three-valued feature this linguistic system could be modified so that the
vowel quality is in fact a binary feature with, say, the two binary features of high and
back.
13 It is also possible to compare this algorithm with the CA for linguistic systems that do
not have the FCF.  Simply, the CA is not guaranteed to set features correctly in these
systems while the algorithm presented here will (excepting the final default assignment of
features).
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will be inconsistent.  That is, no ranking will map that underlying value to the correct

output in that overt form because that feature must be faithfully mapped.  What this

means for the contrast-pair processing algorithm presented here is that all local lexica that

do not have the underlying value for this morpheme that matches the overt form, that is,

that do not map the feature faithfully, will be inconsistent.  Hence this algorithm will set

the feature correctly and therefore every feature that the CA procedure will set the

contrast-pair processing algorithm will also set.

The contrast-pair processing algorithm in some languages will also set more features than

the CA procedure.  The language presented in Tesar 2004 on pp18, which the CA

procedure is applied to, has the same overt forms and morphological decomposition as

one of the languages from the linguistic system presented in Chapter 2.  This language is

given by the ranking and mappings of forms given below.

1. Language L1
WSP >> Ident(Stress) >> MainLeft >> MainRight >> Ident(Length) >> *V:

2. Mappings of morphemes in L1

/stress, length/ ka /−X/ sá  /+−/ záa /++/
pa    /−−/ páka pasá pazáa
baa  /−+/ báaka basá bazáa
tá     /+−/ táka tása táza
dáa  /++/ dáaka dáasa dáaza

This is the language that the algorithm is demonstrated on in Chapter 2.  As shown there,

the contrast-pair processing algorithm successfully determines the underlying forms of

the language and determines a ranking that produces the correct overt forms.  As shown
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in Tesar 2004, the CA procedure fails to set one of the underlying features, specifically

the stress of the suffix záa.

The CA procedure fails to set the stress of záa because in each contrast pair that contains

the morpheme and which requires the faithful mapping of stress for záa there already

exists a feature that could account for the contrasting value of stress, namely length.

Because záa is underlyingly long (and the CA procedure has set the length value) there

will always be a potentially explanatory (from the perspective of the CA procedure)

faithfully mapped feature.  The contrast-pair processing algorithm uses further

information about the linguistic system to determine that in fact the záa must also be

underlyingly stressed.  The algorithm uses information about the constraints, that is,

grammatical information that the CA procedure does not use.  Because the contrast-pair

processing algorithm determines that the alignment constraint MainLeft outranks

Ident(Length) it determines that underlying length is not enough to draw stress onto the

záa morpheme in the overt forms pazáa and bazáa and this relative ranking of MainLeft

and Ident(Length) cause each local lexicon with záa underlyingly unstressed to be

inconsistent for this contrast pair.  So grammatical knowledge (ranking information)

implied by other forms of the language allows the contrast-pair processing algorithm to

extract more information about the underlying forms than does the CA procedure.
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Section 7.2 Sources of information and further direction

Learning a natural language is a search of the linguistic space.  For any reasonably

complex and realistic linguistic system exhaustive searching, which is of course

guaranteed to succeed, is bound to end in search times that are unreasonable.  Because of

this, in this dissertation I have argued that contrast pairs are the correct focus for learning.

They provide a balance of tractable search and information content.  The algorithm

proposed, CPR, by focusing on consistent local lexica of a contrast pair can gather both

ranking information and lexical information allowing the learner to bootstrap its way to

knowledge about the target language.

It is the fact that contrast pairs yield both ranking information and lexical information that

make them such a promising source of information for the learner.  Contrast is crucial to

this information yield.  Because the pairs of overt forms that constitute a contrast pair

necessarily contrast on some feature it is guaranteed that some lexical information

accounts for the surface contrast.  Underlying lexical differences are the only means of

explaining surface contrast.  Looking to consistent local lexica and finding similarities

between them allows the learner to extract some of the lexical requirements imposed by

the contrasting surface features.  Contrasting pairs both contain lexical information and

are tractable enough to allow the learner to extract that information.

The learner does not necessarily extract all lexical information available from a contrast

pair though, only those lexical requirements imposed by the current knowledge of the
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learner.  Further information gained from other contrast pairs may then lead the learner,

later in learning, to extract from that very same contrast pair further lexical information.

This interaction of information from different contrast pairs can allow the learner to

quickly hone in on the correct lexicon without resorting to exhaustive search.

Contrast pairs can also yield information about the ranking.  Focusing on the consistent

local lexica of a contrast pair provides the learner with potential input-output mappings.

Knowing that a set of underlying forms could be the correct underlying forms for a

contrast pair puts the learner in a position to determine ranking information about the

grammar as a whole.  It is the extraction of shared ranking information across the

consistent local lexica that gives the learner information about the grammar.

These two types of information, ranking and lexical, are intertwined.  Knowledge of the

lexicon restricts what the potential rankings are and knowledge of the ranking of a

language restricts what the potential lexica are.  Incremental information gain about the

lexicon extracted while investigating a contrast pair can lead to incremental information

gain about the ranking while investigating a different contrast pair, and similarly

information about the ranking can lead to information about the lexicon.  In this way

these two sources of information feed each other allowing the learner to avoid testing

each lexicon and each ranking together for consistency.  The learner can “bootstrap”

itself from no knowledge of the ranking or lexicon to complete knowledge of the ranking

and the lexicon.
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Section 7.3 Further issues

As discussed, this approach does not solve all problems regarding learning a lexicon and

ranking concomitantly.  The processing of contrast pairs procedure is not guaranteed to

set all necessary features and determine all necessary ranking requirements and may

during the final stage of learning incorrectly set a feature.  The approach laid out here

also does not fully explore the issue of determining subset relationships between

languages and may determine a superset language is being learned when a subset

language is the correct target language.  Knowing what aspects of the learning algorithm

contribute to these issues may allow future research to shed light on solutions to them.

As mentioned, specification of default feature values in the final stage of the learning

algorithm may lead the learner to incorrectly set those features that have not been set by

the contrast-pair processing stage.  This potential was demonstrated in the pseudo-

Palauan language presented in chapter 6.  Even though default values may be incorrect

the staged learning presented here allows the learner to localize any errors made during

learning to those features set in the final stage.  Knowing that any lexical or ranking

information gained from the previous stages of learning must be correct allows the

learner to restrict the focus of correcting any feature-setting mistakes to the final stage.

Furthermore, if an error is made in the final stage it is discoverable.  Error-driven

learning on the fully-specified forms will fail if any of the features assigned default

values are incorrect.  The ranking information gained from the algorithm cannot be the
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source of the error, only the final lexical assignment.  Localization and discoverability of

error allow this approach to be maintained even if the final stage of learning is

insufficient for the learner to correctly determine the target language.

Another issue addressed only briefly in this dissertation is the problem of determining

subset relationships between languages.  As shown in chapter 3 there can exist languages

that are consistent with the overt forms of the language that have different ranking and

different underlying forms.  In a situation like that presented the method demonstrated

here may not produce the correct language.  This is because the determination of lexical

information and ranking information from contrast pairs only takes correct steps.

Ranking information is only accepted if the learner can be sure that it is true of the target

language.  Similarly, excepting the final stage of learning, the learner only accepts lexical

information if the learner is guaranteed that the information is correct.  An approach such

as this will not be able to adjudicate between two languages that are both consistent with

the overt forms presented to the learner.  Further techniques and heuristics are needed.

One such technique was outlined in chapter 3.  While not fully developed such an

approach may lead to insights into the nature of determining subset relationships between

languages.

Section 7.4 Further direction

The approach to learning presented in the dissertation focuses on extracting ranking

information and lexical information from morphologically segmented overt forms.  While
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showing that efficient extraction of information is possible given the focus on the correct

unit, it leads to further questions about the nature of learning.  Assumed is that the learner

knows the morphological decomposition of the overt forms of the language.  If this

assumption is dropped, how does the learning of the morphemes of the language interact

with learning of the underlying forms and of the grammar?  How does knowledge and

learning of the grammar affect morpheme acquisition?  What role does phonotactic

learning play here?  There is every reason to believe that the techniques and insights

developed here could lead to further understanding of the interrelated problem of learning

the underlying forms of a language, the grammar of a language, and the morphological

decomposition of overt forms.

The interrelated nature of determining ranking and lexical information seems to pose an

insurmountable challenge to the learner.  And yet by focusing on contrast pairs and

iteratively extracting ranking information and lexical information from these contrast

pairs the learner is able to determine, if not all, then nearly all information that is possibly

gained from the overt forms of the language.  This type of iterative, incremental approach

of intertwined learning yields much useful information to the learner.
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