THE QUESTION:

What if a morpheme has no underlying phonological material?

What happens to it?

Options:

1. COPY: i.e. reduplication:

2. **REMAIN EMPTY**: i.e. zero morphs: SHEEP + {plural} \rightarrow SHEEP {plural} $\int_{1}^{1} p$ \emptyset

3. **COALESCE**: an (as yet) unexplored alternative:

$$C + PATA \rightarrow C PATA$$

$$p a t a$$

Aim: To Explore the Consequences of Coalescing Morphemes...

Issues:

>What phonological consequences can C

have?

>How can we tell if **C** is present?

Preliminaries:

Implementation in Optimality Theory

How do we get Coalescing Morphemes C?

How are *copying* and *coalescence* different?

Answer:

- ➤Copying results in more material than coalescence, violating *STRUC "Don't have segments" more.
- Coalescence results in violations of
 - MORPHDIS:

"An output segment can belong to only one morpheme."

C + pata	*STRUC	MORPHDIS
$ \begin{array}{c} \mathbb{C} \text{PATA} \\ \bigtriangleup \\ \end{array} \\ patapata \end{array} $	x x x x!	
C PATA		XXXX

So, the coalescence ranking is:

This is a lot like morphological haplology. In fact, C can be seen as a reduplicant that has fully haplologized with its base: <u>Reduplication</u>: pata + C \rightarrow pata<u>pata</u> <u>Haplology</u>: pata<u>pata</u> \rightarrow <u>pata</u>

Lengthening in Maori

Vowel Lengthening happens in many places in

Maori:

➤ reduplication,

 \triangleright some passivizations and nominalisations,

 \succ and even on its own.

It always has the same character:

 $CVCVCV \rightarrow CV:CVCV$

1. Lengthening Alone:

(I) Plural Formation:

taŋata 'man' \rightarrow ta:ŋata 'men'

matua 'parent' \rightarrow ma:tua 'parents'

(II) Other Processes:

koneke	'(<i>v</i>) slide along'	\rightarrow	ko:neke	$e^{(n)}$ sledge'
maru:	(<i>v</i>) rumble, reverberate'	\rightarrow	ma:ru:	'(<i>adj</i>) low in tone'
takai	'(v) wrap up'	\rightarrow	ta:kai	'(<i>n</i>) bandage'

PrWds in Maori:

> A PrWd boundary occurs at every Root Edge:

poro 'cut' + pepa 'paper' \rightarrow

 $[poro]_{PrWd}[pepa]_{PrWd}$ 'guillotine'

This is only blocked if an affix is too small to form a PrWd on its own:

 $\sigma_{\mu} \text{RED} + \text{kino} \rightarrow [\underline{ki} \text{kino}]_{PrWd}, *[ki:]_{PrWd}[kino]_{PrWd}$

patu + {passive} \rightarrow [patua]_{PrWd}, *[patu][a:]_{PrWd}

Cf

 ${Causative} + hoki \rightarrow [faka]_{PrWd}[hoki]_{PrWd}$

These facts explain lengthening...

Proposal:

- \succ There is a 'coalescing morpheme' C.
- \succ It is a morphological *Root*.
- Because it is a Root, it must be a MinWd in size: i.e. bimoraic.
- Because it is a Root, there must be a PrWd boundary at its left edge.

Only the following structure will satisfy these requirements...

- \succ *ta* has to lengthen to *ta*: to satisfy the requirement that PrWds have two moras.
- ➢ Q: Why does C only coalesce with [ŋata] and not [taŋata]?

► <u>A</u>:

(1) **C**'s *size* is determined by constraints on root size (e.g. STEM=PRWD, FTBIN) which conspire to make it a foot in size.

(2) C's *position* is determined by ANCHOR constraints, just like those used for reduplicants.

Alternatives:

What if plural formation simply required words to be fully parsed into feet?
This would get the right results:

$ta\eta ata \rightarrow (ta:)(\eta ata)$

Of course, we would have to explain why the leftmost vowel always lengthened. But, putting this aside, why not?...

Reduplication

There are Six reduplicants in Maori:

Size	Prefixed	Infixed
σ_{μ}	<u>pa</u> paki, <u>ho</u> hoata	taweke \rightarrow ta: <u>we</u> weke
$\sigma_{\mu\mu}$	<u>ka:</u> kaho	kapiti → ka: <u>pi:</u> piti
Ft	<u>paki</u> paki, <u>para</u> parau	matuku → ma: <u>tuku</u> tuku

How do we explain the INFIXED Sort?

► Leading Ideas:

✤The infixes are actually prefixes.

✤Reduplicants prefix to C.

> Implementation:

For clarity, in a serial derivation style:

- RED MUST ATTACH TO C SO:

4. FINAL STEP:

 In Maori, a PrWd boundary must appear at the left edge of every Root.
 RESULT: *LENGTHENING*:

ALTERNATIVES: WHY DO IT THIS WAY?

- Q: Why not say there is a condition that all morphemes be parsed into feet?
- A: RED- σ_{μ} + taweke \rightarrow ta:<u>we</u>weke [(ta:)(wewe)ke]...
- ✤ Not all segments get parsed into feet in this form.
- Why not *[(<u>ta</u>ta)(weke)]_{PrWd} i.e. separate the form into two PrWds?
- \bullet or [(<u>ta</u>ta)weke]_{PrWd}

 \bullet or [(tawe)]_{PrWd}[(<u>ke</u>ke)]_{PrWd}?

- Q: Why can't we say that this is simply prefixing to the head foot (As in e.g. Samoan)?
- ➤ A: Stress in Maori usually falls on the leftmost syllable. i.e. /taweke/ → (táwe)ke
 If RED prefixed to the head foot, we would expect *tawetaweke, not tawekeweke.
- Q: Isn't this just resurrecting circumscription? Hasn't circumscription been explained in OT by constraint conflict (McCarthy 1997, etc.)?
- A: This is resurrecting circumscription in a limited way. But necessarily...
- Maori circumscription picks out a constituent that does not occur in the base form: i.e. you do not pick out the head foot of [(táwe)ke] and apply an operation to it. Instead, you have to parse out a rightmost foot, ignoring the base's footing.

- This 'picking out' circumscription is difficult to deal with in OT (McCarthy 1997).
- McCarthy (1997) deals with this by appealing to constraints that require identity of prosody and prosodic role.
- The problem: the Base and Reduplicant can have entirely different prosodic structure:
- ✤ In [ta:][(wéwe)ke], the prosodic structure over the reduplicant we is entirely different to that of the base weke.
- Identity of prosodic stucture is almost impossible in this form: other plausible candidates: [(táta)weke], [(táwe)][(kéke)]. The first of these harmonically binds [ta:][(wéwe)ke].

FINAL ISSUES:

Standard definition of 'Base' = "The string adjacent to the Reduplicant." How does this fit in with the current analysis?

Here, the base of C does not follow C.

So, Redefinition of Base:

Base of Reduplicant:

String *x* is the base of reduplicant *y* iff:

(1) *x* is the exponent of (a) morpheme(s)other than the reduplicant.

(2) (i) *x* is *y*

or (ii) x is separated from y by the most minimal string satisfying (1).

This definition captures the idea that the Base is the *closest string* to the reduplicant that is no the reduplicant itself.

REFERENCES

de Lacy, Paul. 1996. "Circumscription Revisited: An Analysis of Maori Reduplication." Rutgers Optimality Archive #133.

McCarthy, John. 1997. "Faithfulness and Prosodic Circumscription." Rutgers Optimality Archive #201.